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Abstract

We propose a three-pass method to estimate the risk premia of observable factors in a linear

asset pricing model, which is valid even when the observed factors are just a subset of the true

factors that drive asset prices. Standard methods to estimate risk premia are biased in the

presence of omitted priced factors correlated with the observed factors. We show that the risk

premium of a factor can be identified in a linear factor model regardless of the rotation of the other

control factors as long as they together span the space of true factors. Motivated by this rotation

invariance result, our approach uses principal components to recover the factor space and combines

the estimated principal components with each observed factor to obtain a consistent estimate of its

risk premium. This methodology also accounts for potential measurement error in the observed

factors and detects when such factors are spurious or even useless. The methodology exploits

the blessings of dimensionality, and we therefore apply it to a large panel of equity portfolios to

estimate risk premia for several workhorse linear models.

Keywords: Three-Pass Estimator, Empirical Asset Pricing Models, PCA, Latent Factors,

Omitted Factors, Fama-MacBeth Regression

1 Introduction

Asset pricing models often predict that some factors – for example, intermediary capital or aggregate

liquidity – should command a risk premium: investors should be compensated for their exposure to

those sources of risk, holding constant their exposure to all other risk factors.

In many cases, the model-predicted factors are not tradable (i.e., they are not themselves traded

portfolios). The risk premium for each factor can be estimated by constructing a portfolio with

unit exposure (beta) to that factor and zero exposure to all other factors, for example via two-pass
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regressions like Fama-MacBeth or by constructing long-short portfolios with multiple sorts (isolating

selected factor exposures nonparametrically); the risk premium is then computed as the average

excess return of the portfolio exposed only to that factor, and not to the others. The risk premium

of a nontradable factor tells us how much investors are willing to pay to hedge that risk, and therefore

represents quantitative evidence on the economic importance of that factor.

A fundamental concern when estimating risk premia via cross-sectional regressions is the potential

omission of factors (noted, among others, by Jagannathan and Wang (1998)): for the estimation

procedure to correctly recover the factor risk premia, all other priced factors in the economy need to

be controlled for in the two-pass regression. This is an important problem in practice because most

asset pricing models are too stylized to explicitly capture all sources of risk in the economy.1 The

resulting omitted variable bias affects the estimated magnitude and even sign of the risk premia for

the observed factors, and also the test for their statistical significance.

The typical, ad-hoc solution used in the literature to handle this omitted factor problem is to

simply add some factors as “controls” (for example, the market return is often included even if when

it is outside the theoretical model), or, alternatively, to add firm characteristics to the regressions.

This solution involves selecting arbitrary factors or characteristics as controls, with no guidance from

the model and no guarantee that the selected controls are the right ones; the results are often strongly

dependent on the choice of additional factors to include.

In this paper, we show that by exploiting the large dimensionality of available test assets and a

rotation invariance result for linear pricing models, we can correctly recover the risk premium of each

observable factor, even when not all true risk factors are observed and included. In other words, we

can recover the slope of the ideal two-step cross-sectional regression that includes the observed factor

as well as all the omitted factors – even when we cannot directly observe the latter. Our method

therefore solves in a systematic way the omitted variable problem in estimating risk premia, avoiding

the use of arbitrary choices for control factors or characteristics.

We apply our methodology to a large set of 202 equity portfolios. We estimate and test the sig-

nificance of the risk premium of tradable and nontradable factors from a number of different models.

We show that the conclusions about the magnitude and significance of the risk premia often depend

on whether we account for omitted factors (using our estimator) or ignore them (using standard

two-pass regressions). In contrast with the existing literature, we find a risk premium of the market

portfolio that is positive, significant, and close to the time-series average of market excess returns, an

indication of the validity of our procedure. We also decompose the variance of each observed factor

into the components due to exposure to the underlying factors pricing the cross-section of returns,

as well as the component due to measurement error. We find that several macroeconomic factors

are dominated by noise, and after correcting for it and for exposures to unobservable factors, they

command a risk premium of essentially zero. Instead, our results yield strong support for factors

related to financial frictions (like the liquidity factor of Pástor and Stambaugh (2003)), whereas the

1A symptom of this omission is the fact that the pricing ability of the models is often poor, when tested using only
the factors explicitly accounted for by the theory. This suggests that other factors may be present in the data that are
not predicted by the model.
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standard methods that ignore omitted factors produce mixed or insignificant results for many of

these factors in our sample.

Our solution to the omitted factor problem combines two-pass cross-sectional regressions with

principal component analysis (PCA). The premise of our procedure is a simple but useful rotation

invariance result that holds in linear factor models. Suppose that returns follow a linear factor model

with p factors and we wish to determine the risk premium of one of them (call it gt). We show that

a standard two-pass regression will always correctly recover the risk premium for gt as long as the

two-pass analysis includes any p − 1 “control” factors that, together with gt, span the entire factor

space. Because PCA recovers a factor-space rotation (as the number of assets n → ∞), the factors

extracted from PCA represent a natural set of “controls” that allow us to recover the risk premium

of gt. Using PCA also guarantees that the recovered “control” factors are measurement-error free

(though subject to some estimation error), an important precondition for the controls to span the

relevant space.

This invariance result is unique to estimating risk premia in linear factor models, and it does

not hold in standard linear regression settings with omitted variables. For example, in the stan-

dard regression setting where the researcher does not observe some variables but uses some linear

combinations of the variables as “controls,” the estimated coefficients for the observed variable are

not invariant to rotations of the controls.2 The key difference is due to the fact that any rotation

of the factors in two-pass regressions has two offsetting effects on risk exposures and risk premia.

The invariance result states that the two effects always offset each other so that risk premia for the

observable factors are estimated correctly even when risk exposures are not, as long as the “controls”

span the true factor space.

To apply directly, this invariance result requires error-free gt measurement, since gt, together

with the selected PCs, must span the entire factor space. In practice, it is likely that measurement

error affects most empirical factors (and especially non-tradable ones). In this paper, we propose a

three-pass estimator that exploits the invariance result while also accounting explicitly for potential

measurement error in the observed factor. To do so, we first apply PCA to the set of returns,

without using information in gt; only then we relate the latent factors and their risk premia to the

risk premium of the observable factor gt. More specifically, we first use principal component analysis

(PCA) to extract factors and their loadings from a large panel of testing portfolio returns; we then

run a cross-sectional regression (CSR) to find the risk premia of the extracted factors, and finally

recover the risk premia of the observable factor(s) from a time-series regression (TSR) that uncovers

the relation between the observable and latent factors.

2A simple example may help clarify the intuition. Suppose that a variable Y depends linearly on X and Z, two
correlated variables. If Z is not observed, the coefficient of a regression of Y on X alone will contain an omitted variable
bias. Suppose Z is not observed, but X and a rotation of the two variables (aX + bZ) are observed (where a and b are
not known to the econometrician). Together, X and (aX + bZ) span the same space spanned by X and Z. However,
a regression of Y on X and (aX + bZ) will not recover the correct coefficient on X, i.e., this regression does not solve
the omitted variable bias. Our invariance result states that when X and Z are factors and Y are returns in a linear
factor model, the risk premium of X is correctly identified even when the “control” factor is any linear combination
(aX + bZ).
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We show that our estimation procedure yields consistent risk-premium estimates for the observed

factors, and we derive their asymptotic distribution when both the number of testing portfolios n

and the number of observations T are large. Our asymptotic theory allows for heteroscedasticity and

correlation across both the time series and the cross-sectional dimensions, and allows for measurement

error on the observed factor. In addition, the increasing dimensionality simplifies the asymptotic

variance of the risk-premium estimates, for which we also provide an estimator. Moreover, our

inference is valid even when any of the observable factors is spurious or even useless. Finally, we

construct a consistent estimator for the number of latent factors, while also showing that even without

it, the risk-premium estimates could still be consistent.

While most useful for estimating the economic importance of non-tradable factors, our methodol-

ogy can also be applied to tradable factors. For tradable factors, the risk premium can be computed

in two ways. The first is to average the time-series excess return of the factor; the second is to

use cross-sectional regressions, like two-pass estimators or our three-pass methodology, under the

assumptions of the linear factor model. Misspecifications of the model (omitted controls; nonlinear-

ities; correlated time-variation in risk exposures and risk premia) affect the latter estimator but not

the former. Therefore, if the two estimates are different, it is an indication that the factor model

is misspecified. While using standard two-pass regressions the two often differ (even for the market

portfolio, see Lettau and Ludvigson (2001)), estimates of risk premia obtained with our three-pass

methodology are close to the time series average returns for almost all of the tradable factors we

study, including the market portfolio. This gives us confidence in using the same model assumptions

to estimate the risk premia of non-tradable factors, for which this direct validation exercise is not

feasible.

This paper sits at the confluence of several literatures, combining two-pass cross-sectional regres-

sions with high-dimensional factor analysis.

Using two-pass regressions to estimate asset pricing models dates back to Black et al. (1972)

and Fama and Macbeth (1973). Over the years, the econometric methodologies have been refined

and extended; see for example Ferson and Harvey (1991), Shanken (1992), Jagannathan and Wang

(1996), Welch (2008), and Lewellen et al. (2010). These papers, along with the majority of the

literature, rely on large T and fixed n asymptotic analysis for statistical inference and only deal with

models where all factors are specified and observable. Bai and Zhou (2015) and Gagliardini et al.

(2016) extend the inferential theory to the large n and large T setting, which delivers better small-

sample performance when n is large relative to T . Connor et al. (2012) use semiparametric methods

to model time variation in the risk exposures as function of observable characteristics, again when

n is large relative to T . Raponi et al. (2016) on the other hand study the ex-post risk premia using

large n and fixed T asymptotics. For a review of this literature, see Shanken (1996), Jagannathan

et al. (2010), and, more recently, Kan and Robotti (2012). Our asymptotic theory relies on a similar

large n and large T analysis, yet we do not impose a fully specified model.

Our paper relates to the literature that has pointed out pitfalls in estimating and testing lin-

ear factor models. For instance, ignoring model misspecification and identification-failure leads to
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an overly positive assessment of the pricing performance of spurious (Kleibergen (2009)) or even

useless factors (Kan and Zhang (1999a,b); Jagannathan and Wang (1998)), and biased risk premia

estimates of true factors in the model. It is therefore more reliable to use inference methods that

are robust to model misspecification (Shanken and Zhou (2007); Kan and Robotti (2008); Kleiber-

gen (2009); Kan and Robotti (2009); Kan et al. (2013); Gospodinov et al. (2013); Kleibergen and

Zhan (2014); Gospodinov et al. (2016); Bryzgalova (2015); Burnside (2016)). We study a different

model misspecification form – priced factors omitted from the model, which would also bias the

estimates for the observed factors. Hou and Kimmel (2006) argue that in this case, the definition

of risk premia can be ambiguous. Relying on a large number of testing assets, our approach can

provide consistent estimates of the risk premia without ambiguity, and detect spurious and useless

factors. Lewellen et al. (2010) highlight the danger of focusing on a small cross section of assets with

a strongly low-dimensional factor structure and suggest increasing the number of assets used to test

the model. We point to an additional reason to use a large number of assets: to control properly for

the missing factors in the cross-sectional regression. Moskowitz (2003) explores the relation between

the characteristic-based portfolios and the covariance matrix of returns, something that we parallel

in our paper when we exploit the correlation of observable factors with the latent factors to estimate

their risk premia; this link is also further developed in Pukthuanthong and Roll (2014).

The literature on factor models has expanded dramatically since the seminal paper by Ross (1976)

on arbitrage pricing theory (APT). Chamberlain and Rothschild (1983) extend this framework to

approximate factor models. Connor and Korajczyk (1986, 1988) and Lehmann and Modest (1988)

tackle estimation and testing in the APT setting by extracting principal components of returns,

without having to specify the factors explicitly. More recently, Kozak et al. (2015) show how few

principal components capture a large fraction of the cross-section of expected returns. Clarke (2016)

constructs principal components of returns after sorting them by their expected return constructed

using characteristics, to better isolate their priced component. Overall, one of the downsides of latent

factor models is precisely the difficulty in interpreting the estimated risk premia. In our paper, we

start from the same statistical intuition that we can use PCA to extract latent factors, but exploit

it to estimate (interpretable) risk premia for the observable factors. Bai and Ng (2002) and Bai

(2003) introduce asymptotic inferential theory on factor structures. In addition, Bai and Ng (2006b)

propose a test for whether a set of observable factors spans the space of factors present in a large

panel of returns. In contrast, our paper exploits statistically spanning the latent factors in time

series, and their ability to explain the cross-sectional variation of expected returns.

Our paper also relates to the literature on weak factors (see for example Gospodinov et al.

(2016) or Bryzgalova (2015)). An essential element of our rotation invariance result is that the space

spanned by all priced factors can be recovered and factors spanning that space should be used as

controls in the cross-sectional regression. Using principal component analysis to do so as we propose

in this paper precludes the possibility of weak latent factors, i.e. latent factors that have positive

risk premium but close to zero exposure in the set of test assets. Weak factors are associated with

small eigenvalues of returns, and may not be selected by principal components. This is an important

5



concern, that we do not tackle directly in our work and leave for future analysis. However, we point

out three sources of robustness of our analysis with respect to the weak factors problem. First, while

our analysis requires that all true priced factors are strong, we allow at least for the factor of interest

gt to be weak or even useless. That is, if gt is a weak factor, our procedure would correctly classify

it as such and make correct inference on its risk premium. Second, while our asymptotic variance

results are correct only when the exact number of true factors is recovered, our estimates are still

consistent even when “too many” principal components are extracted from the data. Therefore, if

one is worried about the presence of weak factors in the data, increasing the number of principal

components – adding factors with smaller and smaller eigenvalues – will allow us to capture weaker

and weaker factors and verify the robustness of the results. Finally, we can look at tradable factors

(for which a model-free estimate of the expected return can be computed directly) to verify that the

risk premia estimated using our PCA-based methodology correspond to the time-series average excess

return of each factor; in the data, we find relatively small differences between the two approaches,

suggesting that we are not omitting weak factors that might substantially bias our estimates.

Our analysis in this paper uses unconditional linear models. A large literature has explored

conditional factor models where factor exposures, risk quantities, and risk premia can be time varying

(for example, Jagannathan and Wang (1996) and Lewellen and Nagel (2006)). For simplicity, we do

not explicitly focus on conditional models in this paper. However, it is useful to note that as long

as the correlation between risk premia and factor exposures is small, unconditional models would

still yield approximately correct (average) risk premia estimates. In addition, conditional models can

often be approximated by unconditional models with extra factors (where the extra factors capture

interactions between the true factors and variables in the conditioning information set, as described

in Cochrane (2009)); so, to the extent that PCA correctly recovers the relevant factors, they will also

recover the factors in the unconditional model that arise due to time variation in the conditioning

information.

Finally, our paper shares the same spirit with the vast literature on economic forecasting using

factor models, as the first step towards forecasting typically involves a parsimonious representation

of a large panel of predictors. PCA is a widely used toolkit for this purpose, see, e.g., Forni and

Reichlin (1998), Stock and Watson (2002a), Stock and Watson (2002b), Bai and Ng (2006a), Bai

and Ng (2008). Alternatively, Kelly and Pruitt (2013) and Kelly and Pruitt (2015) propose a three-

pass regression filter which leads to a substantial improvement in forecasting, e.g., the conditional

expectation of market returns.

Section 2 proposes a potentially misspecified beta-pricing model and sets the paper’s objective.

Section 3 presents an invariance result, which our identification strategy discussed in Section 4 relies

on. Section 5 introduces the estimation procedure. Section 6 provides the asymptotic theory on

inference. Section 7 presents Monte Carlo simulations, followed by an empirical study in Section 8.

The appendix provides the mathematical proofs.

Throughout the paper, we use (A : B) to denote the concatenation (by columns) of two matrices

A and B. For any time series of vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we write
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āt = at−ā. We use the capital letter A to denote the matrix (a1 : a2 : . . . : aT ), and write Ā = A−ιᵀT ā
correspondingly. ei is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on

the context. ιk denotes a k-dimensional vector with all entries being 1. We denote PA = A(AᵀA)−1Aᵀ

and MA = I− PA.

2 Model Setup

We start describing a simple example – a special case of the more general setup considered later in

this section – that illustrates the omitted factor bias in two-pass regressions.

Suppose that we want to estimate and test the significance of the risk premium for an observable

factor gt suggested by theory: for example, a liquidity or a financial intermediary capital factor. The

true factor model includes gt but also another, unobserved, factor ft. gt and ft can be arbitrarily

correlated in the panel of returns, and the betas with respect to each factor can also be arbitrarily

cross-sectionally correlated, as long as they are not perfectly correlated. In addition, we allow for

some measurement error in gt.

Trying to estimate the risk premium of gt using standard cross-sectional regression methods (but

without observing the potentially correlated ft) causes two problems to arise. First, the time series

regression of returns on the observed gt will yield biased betas (due both to the omission of ft and

measurement error in gt). The second pass involves a cross-sectional regression of the expected

returns onto the estimated betas. Because only the betas corresponding to gt are included in the

regression, another omitted variable bias arises. Eventually, all three biases appear in the estimated

risk premium due to the time-series correlation of the factors, the cross-sectional correlation of the

betas, and the measurement error in the observable factor gt. In fact, it is enough that any of these

issues occurs to bias the risk premium estimate of factor gt.

Instead, our procedure is able to fully recover the correct risk premium of gt, correcting all three

sources of bias. To do so, it uses PCA on the panel of returns to extract factors that span the entire

factor space (two factors in this case) and directly account for the variation in gt that is not due to

measurement error. Effectively, this methodology allows us to “control” for the unobservable factors

in the risk premia estimation, and clean up the observed factors from the measurement error.

We specify that assets are priced by a linear factor model with potentially unobservable factors:

Assumption 1. Suppose that ft is a p × 1 vector of asset pricing factors, and that rt denotes an

n× 1 vector of observable returns of the testing assets. The pricing model satisfies:

rt = ιnγ0 + α+ βγ + βvt + ut, ft = µ+ vt, E(vt) = E(ut) = 0, and Cov(ut, vt) = 0, (1)

where vt is a p× 1 vector of innovations of ft, ut is a n× 1 vector of idiosyncratic components, α is

an n× 1 vector of pricing errors, β is an n× p factor loading matrix, and γ0 and γ are the zero-beta

rate and the p× 1 risk premia vector, respectively.

We allow for a non-zero pricing error in the cross section of expected returns, so that the linear
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factor model is a potentially imperfect approximation of the true model. The focus of this paper is

not on testing the null of APT, and allowing for at least some form of potential mispricings yields a

more robust inference on the factor risk premia. We discuss in Section 6 which processes and types

of pricing errors are allowed in our framework. Most of our results hold for non-stationary processes

with heteroscedasticity and dependence in both the time series and the cross-sectional dimensions.

Assumption 2. There is an observable d× 1 vector, gt, of factor proxies, which satisfies:

gt = ξ + ηvt + zt, E(zt) = 0, and Cov(zt, vt) = 0, (2)

where η, the loading of g on v, is a d×p matrix, ξ is a d×1 constant, and zt is a d×1 measurement-

error vector.

We allow for measurement error in gt, because this is often plausible in practice. It captures

noise in the construction or measurement of the factors, or exposure to idiosyncratic risks (it can

be correlated with ut). Assumption 2 says that gt proxies for a set of asset pricing factors in the

linear factor model representation: after removing measurement error, gt captures exactly a linear

transformation of the fundamental factors, ηvt.

This specification implies that we can represent the true asset pricing model – after a rotation –

as a model where gt corresponds to the first d factors (after removing measurement error), together

with other p−d factors that are other combinations of the fundamental factors vt but are potentially

not observed. The simple model discussed at the beginning of this section is a special case of the

general model described in Assumptions 1 and 2. There was no measurement error, and gt coincided

with one of the factors in vt, so that η was simply the unit vector e1.

3 An Invariance Property

We are interested in the risk premium associated with each observable factor in gt. Recall that a

factor’s risk premium is the expected excess return of a portfolio with no idiosyncratic risk, no alpha,

unit beta with respect to that factor, and zero beta with respect to all other risk factors. Because gt

may contain measurement error, we refer to the risk premium of gt as the risk premium with respect

to ηvt, (i.e., the compensation for the systematic risk to which gt is exposed).3 To calculate the risk

premium of any of the factors in gt, we rely on a rotation of the fundamental model (1) such that the

factor appears directly as one of the p factors, together with p− 1 rotated factors. Such a rotation is

not unique, but the risk premium is invariant as is shown below. This general result holds regardless

of whether vt is observable or not.

Proposition 1. Suppose Assumptions 1 and 2 hold. The risk premium of gt is ηγ. Moreover, it

is invariant to the choice of factors in Assumption 1, as long as the space spanned by the rotated

factors is the same as that of the true factors.

3Without ambiguity, we do not distinguish the risk premium of ηvt from the risk premium of gt.
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Proposition 1 states that we can always transform a linear factor model with p factors (vt) into

a representation where gt appears as one of the p factors, together with p− 1 other factors, that are

linear combinations of the original factors. In any such transformation, as long as it preserves the

same span of the factors, the risk premium of gt is equal to ηγ. In contrast, the factor loading with

respect to gt is obviously not invariant, which depends on the correlation between gt and the other

factors.

To see the intuition for the result, derived formally in the appendix, consider one observed factor

gt with no constant or measurement error in it, so that gt = ηvt. For any full-rank p× p matrix H,

call qt = Hvt the factors in the rotation H of the linear factor model (i.e., in the linear-factor-model

representation where qt are the factors). It is easy to observe that if the vector of risk premia of vt

is γ, the vector of risk premia of qt is Hγ. Now consider any rotations H such that gt appears as

a first factor. There are many such rotations: in fact, any matrix H where the first row is η will

produce a rotated model where gt is the first factor (because gt = ηvt). The risk premium of gt is

then ηγ, no matter what the other p− 1 rows of H are, because it is the first element of Hγ. So the

risk premium of gt (ηγ) is well-defined in any rotation of the model where gt is the first factor, as

long as any other p− 1 linear combinations of vt are included (the additional rows of H). The risk

exposures (betas) to gt, instead, cannot be determined because they depend on the entire matrix H.

Proposition 1 also implies that in theory we can obtain the risk premium of gt in two ways,

assuming vt is observed. We can first transform the model so that gt appears as a factor, and

then apply standard two-pass estimator to this transformed model, directly recovering ηγ as the

risk premium of gt. Alternatively, we can first obtain the factor risk premia in the original model

expressed in terms of vt (where gt may not directly appear), obtaining the risk premia of the factors

vt, γ. Then, we compute the risk premium of gt by multiplying this γ by η, the exposure of gt to vt.

Another implication of this invariance result is that as long as the original model (in terms of

vt) is well identified, then its rotations will also be well identified. For example, if gt and ht are two

observable factors and are both linear functions of vt, the risk premia associated with gt and ht will

be well identified even if these two factors are highly correlated. Intuitively, rotating the model from

vt to a model expressed in terms of gt and ht (and other factors) will rotate not only the factors

and their risk premia but also the risk exposures. The rotations of factor exposures and factor risk

premia offset each other, so that if the original model is well identified, the transformed model is

also well identified. Our procedure exploits this invariance property to achieve identification of the

risk premia of several observable factors even when they are highly correlated.

This invariance result effectively tells us that the risk premium of a factor gt can be identified

as long as we control for the exposures to a set of factors that span the entire factor space. In this

paper, we do not assume these factors are directly observable. In the next section, we discuss how

to use PCA to identify the space spanned by these latent factors.

9



4 Identification

There is fundamental indeterminacy in latent factor models. We can multiply β by any invertible

matrix H on the right-hand side, and multiply γ and vt by H−1 on the left-hand side, and both βvt

and βγ will remain the same. Clearly, this implies that it is not possible to directly identify γ when

not all factors are observed. The previous section shows that the risk premium associated with gt

is always equal to ηγ, no matter how the latent factors are rotated. So to estimate it, we need to

recover a rotation of the factor space. Below we show that we can identify ηγ and recover it from

observed variables, returns rt and the observable factor gt, when n→∞.

Despite the potential unobserved heterogeneity due to α, the demeaned time series of each asset

follows a standard approximate factor model (cf. Chamberlain and Rothschild (1983)), which, in

matrix form, is given by

R̄ = βV̄ + Ū . (3)

Bai and Ng (2002) discuss identifying the number of latent factors p in a large n and large T setting.

Bai (2003) argues that we can recover β and V̄ up to some invertible matrix H, only as n→∞. We

denote them by βH−1 and HV̄ . From the cross-sectional equation:

E(rt) = ιnγ0 + α+ βγ = ιnγ0 + α+ βH−1Hγ,

we can recover Hγ and identify γ0, if ιn and β are not perfectly correlated and the cross-sectional

mean of α is zero. On the other hand, Assumption 2 leads to

Ḡ = ηV̄ + Z̄ = ηH−1HV̄ + Z̄, (4)

so we can recover ηH−1 if V̄ V̄ ᵀ is non-singular. This implies that we can identify ηγ = ηH−1Hγ.

The success of the identification strategy is another example of the “blessings of dimensionality”

(Donoho et al. (2000)). The large panel of cross-sectional returns certainly presents estimation

challenges. However, it also provides a unique opportunity to identify and estimate the span of the

latent factors that drive the asset returns. We can also identify and consistently estimate ηγ, even

without a consistent estimator of p, as long as we use some p̆ ≥ p in estimation in the same spirit of

Moon and Weidner (2015).4

5 The Three-Pass Estimator

We summarize the parameters of interest in Γ = (γ0 : (ηγ)ᵀ)ᵀ, where γ0 is the zero-beta rate. We

only use the observable data, (i.e., rt and gt, t = 1, 2, . . . , T ). In light of the rotation invariance and

4Bai (2009) discusses the identification of finite-dimensional parameters in a linear panel regression model with
interactive fixed effects, also in the large n and large T setting with p fixed. Allowing p to increase with n or T is
interesting, and we leave it for future work.
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identification results, we propose the following three-pass estimation procedure:

(i) PCA. Extract the principal components of returns, by conducting the PCA of the matrix

n−1T−1R̄ᵀR̄. Define the estimator for the factors and their loadings as:

V̂ = T 1/2(ξ1 : ξ2 : . . . : ξp̂)
ᵀ, and β̂ = T−1R̄V̂ ᵀ, (5)

where (ξ1, ξ2, . . . , ξp̂) are the eigenvectors corresponding to the largest p̂ eigenvalues of the

matrix n−1T−1R̄ᵀR̄, and p̂ takes the following form:

p̂ = arg min
1≤j≤pmax

(
n−1T−1λj(R̄

ᵀR̄) + j × φ(n, T )
)
− 1,

where pmax is some upper bound of p and φ(n, T ) is some penalty function.

(ii) CSR. Run a cross-sectional ordinary least square (OLS) regression of returns onto estimated

factor loadings β̂ to obtain the risk premia of the estimated factors:

Γ̃ := (γ̃0, γ̃
ᵀ)ᵀ =

(
(ιn : β̂)ᵀ(ιn : β̂)

)−1
(ιn : β̂)ᵀr̄.

(iii) TSR. Run another regression of gt onto the estimated factors based on (4), so that

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1, and Ĝ = η̂V̂ .

The estimator of the zero-beta rate and the risk premium for the observable factor gt is obtained

by combining the estimates of the second and third steps, given by

Γ̂ :=

(
γ̂0

γ̂

)
:=

(
1 0

0 η̂

)
Γ̃ =

(
γ̃0

η̂γ̃

)
.

This estimator also has a more compact form:

γ̂0 =
(
ιᵀnMβ̂

ιn

)−1
ιᵀnMβ̂

r̄, and γ̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1
(
β̂ᵀMιn β̂

)−1
β̂ᵀMιn r̄.

The first step presents an estimator of p̂, which we will show to estimate p consistently. This

estimator is based on a penalty function, similar to the one Bai and Ng (2002) propose. It takes on

a simpler form. pmax is an economically reasonable upper bound for the number of factors, imposed

only to improve the finite sample performance. It is not needed in asymptotic theory. We prefer

this estimator for its simplicity in proofs. Other estimators are equally applicable, including but not

limited to those proposed by Onatski (2010) and Ahn and Horenstein (2013). Also, similar to Bai

and Ng (2002), when T > n, we can consider the PCA of the n × n matrix n−1T−1R̄ᵀR̄ instead to

accelerate the algorithm. The corresponding estimators in (5) are given by

β̂ = n1/2
(
ς1, ς2, . . . , ςp̂

)
, and V̂ = n−1β̂ᵀR̄,
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where
(
ς1, ς2, . . . , ςp̂

)
are the eigenvectors corresponding to the largest p̂ eigenvalues. The rest steps

are identical.

In the second stage, we suggest using an OLS regression for its simplicity. Either a generalized

least squares (GLS) regression or a weighted least squares (WLS) regression is possible, but either

of the two would require estimating a large number of parameters, (e.g., the covariance matrix of

ut in GLS or its diagonal elements in WLS). As it turns out, these estimators will not improve the

asymptotic efficiency of the OLS to the first order for the purpose of Γ estimation. This is different

from the standard large T and fixed n case because the covariance matrix of ut only matters at the

order of Op(n
−1 + T−1), whereas the convergence rate of Γ̂ is Op(n

−1/2 + T−1/2).

The third step is a new addition to the standard two-pass procedure. It is critical because it

translates the uninterpretable risk premia of latent factors to those of factors the economic theory

predicts. This step also removes the effect of measurement error, which the standard approach cannot

accomplish. Even though gt can be multi-dimensional, the estimation for each observable factor is

separate. Estimating the risk premium for one factor does not affect the estimation for the others

at all, something that our estimator achieves without any omitted variable bias.

The three steps of our procedure suggest an alternative interpretation of the invariance result.

As discussed in Cochrane (2009), in linear factor models the risk premium of any factor gt is simply

the univariate covariance of gt with the stochastic discount factor mt. Formally, in our setting,

mt = 1 − γᵀΣ−1
v vt, so that ηγ = −Cov(gt,mt). The first two steps of the procedure (PCA and

CSR) recover the stochastic discount factor mt in the linear factor model (which is invariant to the

rotation of the factors). The requirement of spanning the factor space is what allows to estimate the

stochastic discount factor consistently. The TSR step effectively computes the univariate covariance

between gt and the stochastic discount factor mt estimated in the first two stages. The invariance

result follows from the fact that the latter stage only involves a univariate covariance with mt, which

itself is invariant to the rotation of the factor space.

6 Asymptotic Theory

In this section, we present the large sample distribution of our estimator as n, T →∞. Most results

hold under the same or even weaker assumptions compared to those in Bai (2003). This is because

our goals are different. Our main target is ηγ, instead of the asymptotic distributions of factors and

their loadings.

We need more notation. We use λj(A), λmin(A), and λmax(A) to denote the jth, the minimum,

and the maximum eigenvalues of a matrix A. By convention, λ1(A) = λmax(A). In addition, we use

‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the operator norm (or L2 norm),

and the Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |, maxi
∑

j |aij |,
√
λmax(AᵀA),

and
√

Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij | to denote the L∞ norm of A on

the vector space.

Let (P,Ω,F) be the probability space. We say a sequence of centered multivariate random

12



variables {yt}t≥1 satisfies the exponential-type tail condition, if there exist some constants a and b,

such that P (|yit| > y) ≤ exp{−(y/b)a}, for all i and t. We say a sequence of random variables satisfies

the strong mixing condition if the mixing coefficients satisfy αm ≤ exp(−Kmc), for m = 1, 2, . . .,

and some constants c > 0 and K > 0. K is a generic constant that may change from line to line.

6.1 Determining the Number of Factors

We start with assumptions on the idiosyncratic component ut. Define, for any t, t′ ≤ T , i, i′ ≤ n:

γn,tt′ = E

(
n−1

n∑
i=1

uituit′

)
, E(uitui′t) = σii′,t, and E(uitui′t′) = σii′,tt′ .

Assumption 3. There exists a positive constant K, such that for all n and T ,

(i) T−1
T∑
t=1

T∑
t′=1

|γn,tt′ | ≤ K, γn,tt ≤ K.

(ii) |σii′,t| ≤ |σii′ |, for some σii′ and for all t. In addition, n−1
n∑
i=1

n∑
i′=1

|σii′ | ≤ K.

(iii) n−1T−1
n∑
i=1

n∑
i′=1

T∑
t=1

T∑
t′=1

|σii′,tt′ | ≤ K.

(iv) E (uᵀtut′ − Euᵀtut′)
2 ≤ Kn, for all t, t′.

Assumption 3 is similar to Assumption C in Bai (2003), which imposes restrictions on the tem-

poral and cross-sectional dependence and heteroskedasticity of ut. Stationarity of ut is not required.

Eigenvalues of the residual covariance matrices E(utu
ᵀ
t ) are not necessarily bounded. In fact, they

can grow at the rate n1/2. Therefore, this assumption is weaker than those for an approximate factor

model in Chamberlain and Rothschild (1983).

Assumption 4. The factor innovation V satisfies:

‖v̄‖MAX = Op(T
−1/2),

∥∥T−1V V ᵀ − Σv
∥∥

MAX
= Op(T

−1/2),

where Σv is a p× p positive-definite matrix and 0 < K1 < λmin(Σv) ≤ λmax(Σv) < K2 <∞.

Assumption 4 imposes rather weak conditions on the time series behavior of the factors. It

certainly holds if factors are stationary and satisfy the exponential-type tail condition and the strong

mixing condition, see, Fan et al. (2013).

Assumption 5. The factor loadings matrix β satisfies ‖β‖MAX ≤ K. Moreover,∥∥∥n−1βᵀβ − Σβ
∥∥∥ = o(1), as n→∞,

where Σβ is a p× p positive-definite matrix and 0 < K1 < λmin(Σβ) ≤ λmax(Σβ) < K2 <∞.

13



Assumption 5 is the so-called pervasive condition for a factor model. It requires the factors to

be sufficiently strong that most assets have non-negligible exposures. This is a key identification

condition, which dictates that the eigenvalues corresponding to the factor components of the return

covariance matrix grow rapidly at rate n, so that as n increases they can be separated from the

idiosyncratic component whose eigenvalues are bounded or grow at a lower rate. This assumption

precludes weak but priced latent factors. Onatski (2012) develops the inference methodology in a

framework that allows for weak factors using a Pitman-drift-like asymptotic device. We leave the case

of weak and latent factors for future work. However, we demonstrate the robustness of our empirical

results with respect to the number of factors: the risk premia estimates and their significance remain

similar even as more latent factors with lower eigenvalues are added to the estimation.

That said, our setup explicitly allows for weak observable factors. Whether gt is strong or weak

can be captured by the signal-to-noise ratio of its relationship with the underlying factors vt (from

equation (2)). If either η = 0 (gt is not a priced factor) or the factor is very noisy (measurement

error zt dominates the gt variation) then gt will be weak, and returns exposures to gt will be small.

Our procedure estimates equation (2) in the third pass and is therefore able to detect whether an

observable proxy gt has zero or low exposures to the fundamental factors (η is small) or whether it is

noisy (zt is large), and corrects for it when estimating the risk premium. The R2 of that regression

reveals how noisy g is, which, as we report in our empirical analysis, varies substantially across

factor proxies. Our methodology provides an alternative solution to the weak-identification problem

(Kleibergen (2009)), which can be applied when n is large.

Finally, the loadings here are non-random for convenience. In contrast, Gagliardini et al. (2016)

consider random loadings because of their sampling scheme from a continuum of assets. Our as-

sumption is more commonly seen in the literature, see, Connor and Korajczyk (1988), Bai (2003),

and Fan et al. (2013).

Theorem 1. Under Assumptions 1, 2, 3, 4, and 5, and suppose that as n, T → ∞, φ(n, T ) → 0,

and φ(n, T )/(n−1/2 + T−1/2)→∞, we have p̂
p−→ p.

By a simple conditioning argument, we can assume that p̂ = p when developing the limiting

distributions of the estimators, see Bai (2003). In the sequel, we assume p̂ = p. Even though we

cannot always find the true number of factors in a finite sample, our derivation in Section 6.4 shows

that as long as p̂ ≥ p, we can estimate the parameters Γ consistently.

6.2 Limiting Distribution of Γ̂

In this section, we derive the asymptotic distribution of the estimator Γ̂. We need more assumptions

that link the factor proxies gt to the latent factors vt.

Assumption 6. The residual innovation Z satisfies:

‖z̄‖MAX = Op(T
−1/2),

∥∥T−1ZZᵀ − Σz
∥∥

MAX
= Op(T

−1/2),
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where Σz is positive-definite and 0 < K1 < λmin(Σz) ≤ λmax(Σz) < K2 <∞. In addition,

‖ZV ᵀ‖MAX = Op(T
1/2).

Similar to Assumption 4, Assumption 6 holds if zt is stationary, and satisfies the exponential-type

tail condition and some strong mixing condition. It is more general than the i.i.d. assumption, so

that it can be justified for non-tradable factor proxies in the empirical applications.

Assumption 7. For any t ≤ T , and i, j ≤ p, l ≤ d, the following moment conditions hold:

(i) E

(
T∑
s=1

n∑
k=1

vjsuks

)2

≤ KnT.

(ii) E

n∑
k=1

(
T∑
s=1

vjsuks

)2

≤ KnT.

(iii) E

(
T∑
s=1

n∑
k=1

visuksβkj

)2

≤ KnT.

Assumption 7 resembles Assumption D in Bai (2003). The variables in each summation have

zero means, so that the required rate can be justified under more primitive assumptions. In fact, it

holds trivially if vt and ut are independent.

Assumption 8. For any t ≤ T , and k ≤ n, l ≤ d, define σzulk,t = E(zltukt). The following moment

conditions hold:

(i) |σzulk,t| ≤ |σzulk | ≤ K, for some σzulk and for all t. In addition,

n∑
k=1

|σzulk | ≤ K.

(ii) E

n∑
k=1

(
T∑
s=1

(zlsuks − E(zlsuks))

)2

≤ KnT.

(iii) E

(
T∑
s=1

n∑
k=1

(zlsuks − E(zlsuks))βkj

)2

≤ KnT.

Similar to Assumption 7, Assumption 8 specifies the restrictions on the covariances between the

idiosyncratic components and the measurement error. If zt and ut are independent, (i) - (iii) are

easy to verify. For a tradable portfolio factor in gt, we can interpret its corresponding zt as certain

undiversified idiosyncratic risk, since zt is a portfolio of ut as implied from Assumptions 1 and 2. It

is thereby reasonable to allow for covariances between zt and ut. For nontradable factors, zts can

also be correlated with ut in general.

Assumption 9. The cross-sectional pricing error α is i.i.d., independent of u and v, with mean 0,

standard deviation σα > 0, and a finite fourth moment.
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Assumption 9 dictates the behavior of pricing errors in model (1). The APT predicts α to be

0. There is a large body of literature on testing the APT by exploring the deviation of α from 0,

including Connor and Korajczyk (1988), Gibbons et al. (1989), MacKinlay and Richardson (1991),

and more recently, Pesaran and Yamagata (2012) and Fan et al. (2015). This is, however, not the

focus of this paper. Empirically, the pricing errors may exist for many reasons such as limits to

arbitrage, transaction costs, market inefficiency, and so on, so that we allow for a misspecified linear

factor model. Gospodinov et al. (2014) and Kan et al. (2013) also consider this type of model

misspecification in their two-pass cross-sectional regression setting.

Assumption 10. There exists a p× 1 vector β0, such that
∥∥n−1βᵀιn − β0

∥∥
MAX

= o(1). Moreover,

the matrix (
1 βᵀ0
β0 Σβ

)
is of full rank.

The convergence of n−1βᵀιn in Assumption 10 resembles the law of large numbers for factor

loadings. The rank condition ensures that in the limit the factor loadings are not perfectly correlated

in the cross section.

Assumption 11. As T →∞, the following joint central limit theorem holds:

T 1/2

(
T−1vec(ZV ᵀ)

v̄

)
L−→ N

((
0

0

)
,

(
Π11 Π12

Πᵀ
12 Π22

))
,

where Π11, Π12, and Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (vec(ZV ᵀ)vec(ZV ᵀ)ᵀ) ,

Π12 = lim
T→∞

1

T
E
(
vec(ZV ᵀ)ιᵀTV

ᵀ) ,
Π22 = lim

T→∞

1

T
E
(
V ιT ι

ᵀ
TV

ᵀ) .
Assumption 11 describes the joint asymptotic distribution of ZV ᵀ and V ιT . Because the dimen-

sions of these random processes are finite, this assumption is a fairly standard result of some central

limit theorem for mixing processes, (e.g., Theorem 5.20 of White (2000)). Not surprisingly, it is

stronger than Assumption 4, which is sufficient for identification and consistency.

We now present the main theorem of the paper:

Theorem 2. Under Assumptions 1 – 11, and suppose p̂
p−→ p, then as n, T →∞, we have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
,(

T−1Φ + n−1Υ
)−1/2

(γ̂ − ηγ)
L−→ N (0, Id) ,
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where the asymptotic covariance matrices Φ and Υ are given by

Φ =
(
γᵀ (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 γ ⊗ Id

)
+
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ

+ ηΠ21

(
(Σv)−1 γ ⊗ Id

)
+ ηΠ22η

ᵀ, and

Υ =(σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.

Remarkably, Theorem 2 does not impose any restrictions on the relative rates of n and T . More-

over, the asymptotic covariance matrix does not depend on the covariance matrix of the residual ut

or the estimation error of β. Their impact on the asymptotic variance is of higher orders. Therefore,

for the inference on the risk premium of gt, there is no need to estimate the large covariance matrix

of ut. This also implies that the usual GLS or WLS estimator would not improve the efficiency of

the OLS estimator. The large cross section of testing assets extracts all the relevant factors from

their time-series variations, which help correct the biases due to missing controls and measurement

error.

6.3 Goodness-of-Fit Measures

To measure the goodness-of-fit in the cross-sectional of expected returns, we define the usual cross-

sectional R2 for the latent factors:

R2
v =

γᵀ(Σβ − β0β
ᵀ
0)γ

(σα)2 + γᵀ(Σβ − β0β
ᵀ
0)γ

.

To measure the signal-to-noise ratio of each observable factor, we define the time-series R2 for each

observable factor g (1× T ), for the time-series regression of gt on the latent factors:

R2
g =

ηΣvηᵀ

ηΣvηᵀ + Σz
, where η is a 1× p vector.

To calculate these measures in a sample, we use

R̂2
v =

r̄ᵀMιn β̂(β̂ᵀMιn β̂)−1β̂ᵀMιn r̄

r̄ᵀMιn r̄
and R̂2

g =
η̂V̂ V̂ ᵀηᵀ

ḠḠᵀ
, respectively,

where Ḡ = g− ḡ is a 1×T vector. We can consistently estimate the cross-sectional R2 for the latent

factors as well as the time-series R2 for each observable factor.

Theorem 3. Under Assumptions 1 – 11, and suppose p̂
p−→ p, then as n, T →∞, we have

R̂2
v

p−→ R2
v and R̂2

g
p−→ R2

g.
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6.4 Robustness of the Choice of p

Although p̂ is a consistent estimator of p, it is possible that in finite sample p̂ 6= p. In fact, without

a consistent estimator of p̂, as long as our choice, denoted by p̆, is greater than or equal to p, the

estimator based on p̆, denoted by Γ̆ = (γ̆0 : γ̆ᵀ)ᵀ, is consistent. This result is similar in spirit to

that of Moon and Weidner (2015), who establish that, for inference on the regression coefficients in

a linear panel model with interactive fixed effect, it is not necessary to estimate p consistently, as

long as the number of factors we use, p̆, is greater than or equal to p.

To prove this result, we need to apply the random matrix theory in Bai (1999) to analyze the

asymptotic behavior of the extreme eigenvalues of the sample covariance matrix of ut. For this

reason, stronger assumptions on ut are required.

Theorem 4. Suppose Assumptions 1 – 11 hold. Also, suppose that ut are i.i.d. centered random

variables with finite fourth moment, and that zt is independent of vt and ut. If p̆ ≥ p, we have

Γ̆− Γ̂ = Op(n
−1/2 + T−1/2).

The above theorem establishes the desired consistency of Γ̆. While we cannot establish its asymp-

totic distribution, simulation exercises suggest that the differences between the asymptotic variances

of Γ̆ and Γ̂ are tiny.

6.5 Limiting Distribution of ĝt

As discussed above, our framework allows for measurement error in the observable factor proxies g.

Theorem 3 above proves that we can clean these errors up with identified latent factors. Moreover,

we can conduct inference on g at each t, given additional assumptions. Similar to Bai (2003), these

assumptions are essential to derive the central limit result for the rotated factors and their loadings.

Assumption 12. The following conditions hold:

(i)

T∑
t′=1

|γn,tt′ | ≤ K, for all t.

(ii)
n∑

i′=1

|τii′ | ≤ K, for all i.

This assumption is identical to Assumption E in Bai (2003). It restricts the eigenvalues of E(utu
ᵀ
t )

and E(uᵀtut) to be bounded as the dimension increases, because the L∞-norm is stronger than the

operator norm for symmetric matrices.

Assumption 13. For each t, as n→∞,

n−1/2βᵀut
L−→ N (0,Ωt) ,
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where, writing β = (β1 : β2 : . . . : βn)ᵀ,

Ωt = lim
n→∞

1

n

n∑
i=1

n∑
i′=1

βiβ
ᵀ
i′E(uitui′t). (6)

Assumption 13 is identical to Assumption F3 in Bai (2003), which is used to describe the asymp-

totic distribution of v̂t at each point in time.

Theorem 5. Under Assumptions 1 – 8, 11, 12, and 13, and suppose that p̂
p−→ p, then as n,

T →∞, we have

Ψ
−1/2
t (ĝt − ηvt)

L−→N (0, Id),

where Ψt = T−1Ψ1t + n−1Ψ2t,

Ψ1t =
{(

vᵀt (Σv)−1 ⊗ Id
)

Π11

(
(Σv)−1 vt ⊗ Id

)
−
(
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

− ηΠᵀ
12

(
(Σv)−1 vt ⊗ Id

)
+ ηΠ22η

ᵀ
}
, and

Ψ2t =η
(

Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ.

In Bai (2003), the latent factors can be estimated at the n−1/2-rate, provided that n1/2T−1 → 0.

In our setting, the estimation error consists of the errors in estimating η̂ and v̂t. Because η̂ is

estimated up to a T−1/2-rate error which dominates T−1 terms, the convergence rate of ĝt does not

rely on any relationship between n and T .

6.6 Asymptotic Variances Estimation

We develop consistent estimators of the asymptotic covariances in Theorems 2 and 5. We can

estimate them for risk premia as:

Φ̂ =
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂11

(
(Σ̂v)−1γ̃ ⊗ Id

)
+
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ + η̂Π̂21

(
(Σ̂v)−1γ̃ ⊗ Id

)
+ η̂Π̂22η̂

ᵀ,

Υ̂ =σ̂α
2
η̂
(

Σ̂β − β̂0β̂
ᵀ
0

)−1
η̂ᵀ,

where Π̂11, Π̂12, Π̂22, are the HAC-type estimators of Newey and West (1987), defined as:

Π̂11 =
1

T

T∑
t=1

vec(ẑtv̂
ᵀ
t )vec(ẑtv̂

ᵀ
t )ᵀ

+
1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
vec(ẑt−mv̂

ᵀ
t−m)vec(ẑtv̂

ᵀ
t )ᵀ + vec(ẑtv̂

ᵀ
t )vec(ẑt−mv̂

ᵀ
t−m)ᵀ

)
,

Π̂12 =
1

T

T∑
t=1

vec(ẑtv̂
ᵀ
t )v̂ᵀt +

1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
vec(ẑt−mv̂

ᵀ
t−m)v̂ᵀt + vec(ẑtv̂

ᵀ
t )v̂ᵀt−m

)
,
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Π̂22 =
1

T

T∑
t=1

v̂tv̂
ᵀ
t +

1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
v̂t−mv̂

ᵀ
t + v̂tv̂

ᵀ
t−m

)
,

and

Ẑ = Ḡ− η̂V̂ , Σ̂β = n−1β̂ᵀβ̂, Σ̂v = T−1V̂ V̂ ᵀ, β̂0 = n−1β̂ᵀιn, σ̂α
2

= n−1
∥∥∥r̄ − (ιn : β̂)Γ̃

∥∥∥2

F
,

with q →∞, q(T−1/4 + n−1/4)→ 0, as n, T →∞.

To prove the validity of these estimators, we need additional assumptions, because the estimands

are more complicated than the parameters of interest.

Assumption 14. The sequence of {ut, vt, zt}t≥1 is jointly strong mixing, and satisfies the exponential-

type tail condition. Moreover, for all t′, t ≤ T ,

E (uᵀtut′ − Euᵀtut′)
4 ≤ Kn2, E ‖βᵀut‖4 ≤ Kn2.

Assumption 14 ensures that the factors and their loadings are consistent up to some rotations

under the max norm. Fan et al. (2011) and Fan et al. (2015) also adopt it.

Theorem 6. Under Assumptions 1 - 12, 14, and suppose that p̂
p−→ p, then as n, T →∞, n−3T → 0,

q(T−1/4 + n−1/4)→ 0, Φ̂
p−→ Φ and Υ̂

p−→ Υ.

To estimate the asymptotic covariance matrices Ψ1t and Ψ2t in Theorem 5, we can simply replace

vt, Σv, Π11, Π12, Π22, η, Σβ by their sample analogues, v̂t, Σ̂v, Π̂11, Π̂12, Π̂22, η̂, Σ̂β, in the Ψ̂1t and

Ψ̂2t constructions. With respect to Ωt, we need to impose additional assumptions, because it is

rather challenging to estimate, when we allow heteroskedasticity and correlation in both the time

series and cross section.

We consider two scenarios that are relevant in practice.

Assumption 15. Either of the following assumptions holds:

(i) The innovation uit is cross-sectionally independent, i.e., E(uitujt) = 0, for any t ≤ T , 1 ≤ i 6=
j ≤ n.

(ii) The innovation uit is stationary, and its covariance matrix Σu is sparse, i.e., there exists some

h ∈ [0, 1/2), with ωT = (log n)1/2T−1/2 + n−1/2, such that

sn = max
1≤i≤n

n∑
i′=1

|Σu
ii′ |h, where sn = op

((
ω1−h
T + n−1 + T−1

)−1
)
.

Under Assumption 15(i), (6) and its estimator can be rewritten as

Ωt = lim
n→∞

1

n

n∑
i=1

βiβ
ᵀ
i E(u2

it), and Ω̂t =
1

n

n∑
i=1

β̂iβ̂
ᵀ
i û

2
it, (7)

where, writing Û = (ûit), Û := R̄− β̂V̂ .
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With Assumption 15(ii), (6) and its estimator can be rewritten as

Ω = lim
n→∞

1

n
βᵀΣuβ, and Ω̂t = Ω̂ =

1

n
β̂ᵀΣ̂uβ̂, (8)

where, for 1 ≤ i, i′ ≤ n,

Σ̂u
ii′ =

{
Σ̃u
ii, i = i′

sii′(Σ
u
ii′), i 6= i′

, Σ̃u =
1

T

T∑
t=1

ûtû
ᵀ
t ,

and sii′(z) : R → R is a general thresholding function with an entry dependent threshold τii′ such

that (i) sii′(z) = 0 if |z| < τii′ ; (ii) |sii′(z)− z| ≤ τii′ ; and (iii) |sii′(z)− z| ≤ aτ2
ii′ , if |z| > bτii′ , with

some a > 0 and b > 1. τii′ can be chosen as:

τii′ = c(Σ̂iiΣ̂i′i′)
1/2ωT , for some constant c > 0.

Bai and Liao (2013) adopt a similar estimator of Σu for efficient estimation of factor models.

With estimators of their components constructed, our estimators for Ψ1t and Ψ2t are defined as:

Ψ̂1t =T−1
{(

v̂ᵀt (Σ̂v)−1 ⊗ Id
)

Π̂11

(
(Σ̂v)−1v̂t ⊗ Id

)
−
(
v̂ᵀt (Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ − η̂Π̂ᵀ
12

(
(Σ̂v)−1v̂t ⊗ Id

)
+ η̂Π̂22η̂

ᵀ
}
,

Ψ̂2t =n−1η̂
(

Σ̂β
)−1

Ω̂t

(
Σ̂β
)−1

η̂ᵀ,

where Ω̂t is given by either (7) or (8).

Theorem 7. Under Assumptions 1 – 15, we have

Ψ̂1t −Ψ1t
p−→ 0, and Ψ̂2t −Ψ2t

p−→ 0.

7 Simulations

In this section, we study the finite sample performance of our inference procedure using Monte Carlo

simulations. We consider a five-factor data-generating process, where the latent factors are calibrated

to match the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, CMA, see Fama and

French (2015)) from our empirical study below. Suppose that we do not observe all five factors,

but instead some noisy version of the three Fama-French factors (RmRf, SMB, HML, see Fama and

French (1993)), plus a potentially spurious macro factor calibrated to industrial production growth

(IP) in our empirical study. Our simulations, therefore, include both the issue of omitted factors and

that of a spurious factor. We calibrate the parameters η, Σv, Σz, Σu, (σα)2, β0, and Σβ to exactly

match their counterparts in the data (in our estimation of the Fama-French five-factor model). We

then generate the realizations of vt, zt, ut, α, and β from multivariate normal using the calibrated

means and covariances.
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We report in Tables 1, 2, and 3 the bias and the root-mean-square error of the estimates using

standard two-pass regressions and our three-pass approach. We choose different numbers of factors

to estimate the model, p̆ = 4, 5, and 6, whereas the true value is 5. The five rows in each panel

provide the results for the zero-beta rate, RmRf, SMB, HML, and IP, respectively. Throughout these

tables, we find that the three-pass estimator with p̆ = 5 dominates the other estimators, in particular

when n and T are large. Instead, the two-pass estimates have substantial biases. For example, the

bias for the market factor premium is so large that the its two-pass estimates are all negative (True

+ Bias < 0) even when n and T are large, which actually matches what we find using real data and

has been documented in the literature, as we discuss below. The three-pass estimator with p̆ = 4

has an obvious bias, compared to the cases with p̆ = 5 and 6, because an omitted-factor problem

still affects it.

We then plot in Figure 1 the histograms of the standardized risk premia estimates using Fama-

MacBeth standard errors for the two-pass estimator (left column) and the estimated asymptotic

standard errors for the three-pass method with p̆ = 5 (right column).5 The histograms on the left

deviate substantially from the standard normal distribution, whereas those on the right match the

normal distribution very well, which verifies our central limit results. There exist some small higher

order biases for γ0 and the market risk premium, which would disappear with a larger n and T in

simulations not included here.

Finally, we report in Table 4 the estimated number of factors. We choose φ(n, T ) = K(log n +

log T )(n−1/2+T−1/2), where K = 0.5×λ̂, λ̂ is the median of the first pmax eigenvalues of n−1T−1R̄ᵀR̄.

The median eigenvalue helps adjust the magnitude of the penalty function for better finite sample

accuracy. Although the estimator is consistent, it cannot give the true number of factors without

error, in particular when n or T is small, potentially due to the ad-hoc choice of tuning parameters.6

In the empirical study, we apply this estimator of p and select slightly more factors to ensure the

robustness of the estimates, as suggested by Theorem 4.

8 Empirical Analysis

In this section we apply our three-pass methodology to the cross-section of equities. We estimate

the risk premia of several factors, both traded and not traded, and show how our results differ

from standard two-pass cross-sectional regressions (or Fama-MacBeth regressions since we use their

method for calculating standard errors), which ignore the potential omitted factors in the data.

5We have also implemented the standard errors of the two-pass estimators using the formula given by Bai and
Zhou (2015), which provides desirable performance when both n and T are large. However, we do not find substantial
differences compared to the Fama-MacBeth method, so we omit those histograms.

6The eigenvalue ratio-based test by Ahn and Horenstein (2013) does not work well in our simulation setting because
the first eigenvalue dominates the rest by a wide margin, so that their test often suggests 1 factor.
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8.1 Data

We conduct our empirical analysis on a large set of standard portfolios of U.S. equities, testing several

asset pricing models that have focused on risk premia in equity markets. We target U.S. equities

because of their better data quality and because they are available for a long time period. However,

our methodology could be applied to any country or asset class.

We include in our analysis 202 portfolios: 25 portfolios sorted by size and book-to-market ratio,

17 industry portfolios, 25 portfolios sorted by operating profitability and investment, 25 portfolios

sorted by size and variance, 35 portfolios sorted by size and net issuance, 25 portfolios sorted by size

and accruals, 25 portfolios sorted by size and momentum, and 25 portfolios sorted by size and beta.

This set of portfolios captures a vast cross section of anomalies and exposures to different factors;

at the same time, they are easily available on Kenneth French’s website, and therefore represent a

natural starting point to illustrate our methodology.7

Although some of these portfolio returns have been available since 1926, we conduct most of our

analysis on the period from July of 1963 to December of 2015 (630 months), for which all of the

returns are available. We perform the analysis at the monthly frequency, and work with factors that

are available at the monthly frequency.

Although the asset-pricing literature has proposed an extremely large number of factors (McLean

and Pontiff (2015); Harvey et al. (2016)), we focus here on a few representative ones. Recall that

the observable factors gt in the three-pass methodology can be either an individual factor or groups

of factors. We consider here both cases to illustrate the methodology; importantly, the risk premia

estimates for any factors do not depend on whether other factors are included in gt. Here is a list of

models and corresponding observable factors gt included:8

1. Capital Asset Pricing Model (CAPM ): the value-weighted market return, constructed from the

Center for Research in Security Prices (CRSP) for all stocks listed on the NYSE, AMEX, or

NASDAQ.

2. Fama-French three factors (FF3 ): in addition to the market return, the model includes SMB

(size) and HML (value).

3. Carhart’s four-factor model (FF4 ) that adds a momentum factor (MOM) to FF3.

4. Fama-French five-factor model (FF5 ), from Fama and French (2015). The model adds to FF3

RMW (operating profitability) and CMA (investment).

5. Four factors from the Q-factor model (HXZ ) of Hou et al. (2014), which include the market

return, ME (size), IA (investment), ROE (profitability).

7See the description of all portfolio construction on Kenneth French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
8Factor time series for models 1-4 are obtained from Kenneth French’s website; for model 5, from Lu Zhang; for

models 6-7, from AQR’s website; for model 8, from the Federal Reserve Bank of St. Louis; for model 9, from Sydney
Ludvigson’s website; for model 10, from Lubos Pastor’s website; for model 11, from Bryan Kelly’s website.

23

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


6. Betting-against-beta factor (BAB).

7. Quality-minus-junk factor (QMJ ).

8. Industrial production growth (IP). Industrial production is a macroeconomic factor available

for the entire sample period at the monthly frequency. We use AR(1) innovations as the factor.

9. The first three principal components of 279 macro-finance variables constructed by Jurado

et al. (2015) (JLN ), also available at the monthly frequency. We estimate a VAR(1) with those

three principal components, and use innovations as factors.

10. The liquidity factor from Pástor and Stambaugh (2003).

11. Two intermediary capital factors, one from He et al. (2016) and one from Adrian et al. (2014).

8.2 Factors from the Large Panel of Returns

The first step for estimating the observable factor risk premia is to determine the latent factor model

dimension, p. Figure 2 (left panel) reports the first eight eigenvalues of the covariance matrix of

returns for our panel of 202 portfolios. As typical for large panels, the first eigenvalue tends to be

much larger than the others, so in the right panel we plot the eigenvalues excluding the first one. We

observe a noticeable decrease in the eigenvalues after four and six factors, and our estimator suggests

using four factors. As discussed in Section 6, our analysis is consistent as long as the number of

factors p̂ is at least as large as the true dimension p; to show the robustness of our results, we report

the estimates separately using four, five, and six factors. The analysis is robust to using more factors.

After extracting the factors via PCA, the second pass in the three-pass procedure estimates the

risk premia of the latent factors via cross-sectional regressions (CSR). We cannot interpret these

risk premia in economic terms, as opposed to the risk premia of observable factors. The estimated

zero-beta rate from the APT model is 55bp per month, close to the 40bp of the average risk-free rate

return over the sample.

The model has a cross-sectional R2
v of 65%, indicating that it accounts for much of the cross-

sectional variation in expected returns for the 202 test portfolios, but leaving some unexplained

variation. We report in Figure 3 the actual and predicted excess returns for the model. Each panel

of the figure highlights one of the eight test-asset groups that comprise our total of 202 portfolios.

The fit is better for some groups of assets (FF25 and momentum) than others (industry), but overall

the factor model with six factors performs relatively well.

8.3 Risk Premia Estimates for Observable Factors

Tables 5 and 6 report the estimates of observable factor risk premia. Each factor (or set of factors)

gt corresponds to a panel of the tables; the tested gt appears in the first column. In each panel, the

rows correspond to the coefficients of the cross-sectional regressions (intercept γ̂0 and the risk premia
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corresponding to the factors gt, η̂γ̂). The number of observations T is 630 in all cases except for the

HXZ model (where T = 588), JLN (T = 580) and the intermediary-capital model (T = 516).

Across columns, the tables report information about the average returns of the factors (when

traded), standard Fama-MacBeth estimates of the risk premia that ignore potential additional fac-

tors, and results of the three-pass procedure using different numbers of latent factors, from four to

six.

To illustrate the table content, consider for example the second panel, corresponding to the Fama-

French three-factor model. The first column reports the average monthly returns for the three factors

(RmRf, SMB, HML) over the sample period: respectively 50bp, 23bp, and 34bp. The number in

the “intercept” row reports the average value of the risk-free rate Rf over the sample period (in this

case, 40bp).

The second set of columns corresponds to the standard Fama-MacBeth estimation of the intercept

and the three risk premia using all of the 202 portfolios. The results of this exercise line up well

with the previous literature. The zero-beta rate estimate is approximately 1.5% per month, more

than 100bp higher than the average risk-free rate. The risk premium estimate associated with the

market return is negative, and significantly so. HML has a high and significant risk premium of 23bp

per month, close to the time-series average return of the HML portfolio. Finally, size (SMB) has a

smaller and statistically insignificant risk premium.

The remainder of the tables report the estimates for the three-pass procedure. As discussed

above, we repeat the exercise for p̆ = 4, 5, and 6. The estimates are stable across the number

of factors used, consistent with the theoretical result that adding extra factors does not affect the

validity of our procedure. We discuss the results for the case p̆ = 4 in detail.

The estimates of the zero-beta rate and the risk premia for the three factors differ substantially

from the estimates obtained using the standard Fama-MacBeth regression. First, the zero-beta rate

estimate is 55bp, just 15bp per month above the risk-free rate. Second, the market risk premium

estimate is positive, significant, and of a magnitude close to the average return in the data (the

risk premium estimate is 37bp in the model, whereas the average return of the market portfolio

in the data is 50bp over the risk-free rate, and 35bp over the estimated zero-beta rate). The risk

premium associated with HML is stable at a significant 21bp; the risk premium associated with size

is significant and equal to 23bp, matching exactly the average return in the data. Results for the

FF3 model, therefore, are substantially different when estimated via Fama-MacBeth regression or

via three-pass regressions.

The third column of each of the three-pass results reports the R2
g of the time-series regression

(TSR) of the observed gt onto the latent factors; we refer to this as R2
g. Recall that if the factors

driving the returns’ cross section entirely span gt, we should expect to find R2
g close to 100%. However,

if the observed gt is just a noisy proxy for some of the fundamental factors, this R2
g will reflect the

amount of noise in the observed gt. In the data, we find interesting heterogeneity among the three

factors of FF3 with respect to their R2
g. The market and size portfolios have R2

g close to 100%; HML

displays greater noise, with an estimated R2
g of about 67%.

25



Figure 4 shows the time series of cumulated (mean-zero) innovations in the original and cleaned

factors for the Fama-French three-factor model. The figures present a graphical representation of

the variation in the original factors captured by the principal components, corresponding to the R2
g

reported in the table. The figure shows that all three factors correlate highly with the estimated

latent factors.

Tables 5 and 6 report the results for the remaining factors and factor models we study, both

traded factors (e.g., MOM) and non-traded factors (e.g., IP). We summarize here the main results,

highlighting in particular the differences that emerge when estimating the model using our three-pass

procedure rather than the standard Fama-MacBeth regression.

Zero-beta rate. Whereas for most of the models estimated via standard Fama-MacBeth two-pass

regression the zero-beta rate is much larger than the observed risk-free rate (typically between 50

and 100bp above it), the zero-beta rate estimated from the three-pass procedure is mostly 15-20bp

greater than the risk-free rate on average, and statistically insignificantly so. This is due to the fact

that the latent model (with four to six factors) is able to capture a greater fraction of the overall

level of equity-portfolio risk premia.

The market risk premium. A classic result in the empirical asset pricing literature is the typ-

ically negative estimate of the risk premium for market risk from cross-sectional regressions. This

result highlights a potential misspecification for these regressions: under the assumptions of a linear

factor model, for tradable factors the cross-sectional estimate of risk premium should correspond to

the time-series estimate of the average excess return of the portfolio.

The three-pass approach allows us to control for more factors beyond the observable ones, and

at the same time exploit the beta spread across the 202 portfolios to pin down the risk premium

of each observable factor better. The result is that the risk premium estimate for exposure to the

aggregate stock market is positive and significant at 37bp, close to the average excess return of the

market portfolio. It is also useful to note that our procedure guarantees that the estimated risk

premium for a factor does not depend on whether it is estimated together with other observable

factors or by itself; therefore, the market risk premium will be the same when estimating the CAPM,

the Fama-French three-factor and five-factor models, or the Q-factor model of HXZ.

The fact that the market risk premium significantly changes sign depending on whether we control

for omitted factors serves as a strong warning that omitting factors could have important effects on

our statistical and economic conclusions about the pricing of aggregate risks.

Other tradable factors. The table shows that using the three-pass method, the cross-sectional

risk premia estimates for tradable factors are close to the time-series average excess returns of the

portfolios themselves – not only for the market portfolio as described above, but for the vast majority

of the tradable factors we examine. For example, the risk premium associated with HML is close to

zero in the FF5 model when estimating it using standard two-pass regression, while it is positive,

significant, and close to the time-series average return when using the three-pass method.
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This result is important because it helps rule out misspecifications of our linear factor model. For

tradable factors, risk premia can be computed in two ways: by estimating the time-series average

excess return of the factor (a model-free estimator), or by computing the slope of two- and three-

pass estimators under the assumptions of the linear factor model. Any misspecification that affects

our methodology would bias the latter but not the former. Comparing the two estimates when

possible (i.e., for tradable factors) is therefore a simple way to assess whether different types of

misspecification – for example, factors with low variance and high risk premia missed by the PCA

analysis, nonlinearities, correlated time variation in betas and risk premia – affect our estimator, at

least as far as the tradable factors are concerned. The fact that we do not see economically large

differences between the two estimators for tradable factors mitigates the misspecification concerns

for non-tradable factors (for which this form of validation is not possible).

Macroeconomic factors. We consider two different macroeconomic factors. The first one is real

industrial production growth (IP), which captures fluctuations in the real economy and is available

at the monthly frequency. In the classic Fama-MacBeth regression, innovations in IP display a

significantly negative risk premium. The three-pass procedure instead finds it insignificant; in

addition, IP is effectively uncorrelated with the factors that seem to price returns: the R2
g for IP

is about 2%. The three-pass procedure therefore identifies industrial production as essentially a

spurious factor.

This can also be seen graphically by looking at the last panel of Figure 4, which reports the

cumulated innovations in IP and the version cleaned of measurement error. Most of the variation

disappears from the cleaned factor, suggesting that the factor is mostly spurious within our frame-

work.

The same happens for the JLN macro factors: standard two-step Fama-MacBeth regression finds

a large and statistically significant risk premium for the first factor. However, the three-pass method

reveals that that factor is essentially pure noise (R2
g = 1%), as are the other three factors. All factors

have an insignificant risk premium.

Market frictions. Some of the most interesting results appear with respect to two theoretically

motivated nontradable factors related to market frictions: liquidity and intermediation capital.

By simply running Fama-MacBeth regression, the Pástor and Stambaugh (2003) liquidity factor

does not appear to be priced in this cross section of 202 portfolios: its risk premium is 2bp per

month, with a standard error of 97bp. The three-pass analysis shows instead that the liquidity

factor commands a statistically significant risk premium of about 26bp per month.

The prices of the two intermediary factors of He et al. (2016) and Adrian et al. (2014) also

vary with the estimation method. Relative to the results obtained using standard Fama-MacBeth

regression, the three-pass method finds a slightly smaller (but still very large and significant) risk

premium for the Adrian et al. (2014) proxy for intermediary capital. The similar factor built by He

et al. (2016), instead, appears to have a risk premium of zero when estimated via Fama-MacBeth

27



regression, whereas the risk premium appears much larger – 30bp – when estimated using the three-

pass method.9

Overall, the three-pass procedure shows much stronger support for both types of factors (liquidity-

based and intermediary-based) than standard Fama-MacBeth regressions do.

8.4 Observable and Unobservable Factors

The core of our estimation methodology is the link between the observable factors gt and the un-

observable factors vt, through Equation (2). In particular, η represents the loadings of gt onto the

p factors, and therefore reveals the exposures of the observable factors to the fundamental priced

factors.

In Table 7 we decompose the variance of gt explained by the set of factors vt into the components

due to each individual factor (which is possible because factors vt are orthogonal to each other).

Each row of the table, therefore, sums up to 100%. This allows us to highlight which fundamental

factors are most responsible for the variation of the observable factors. Note that the factors are

ordered by their eigenvalues (largest to smallest).

The first row shows that the market return loads mostly onto the first factor, (i.e., on the factor

with the largest eigenvalue). This is expected because the market represents the largest source of

common variation across assets. The other portfolio-based models (such as FF5 and HXZ ) show

interesting variation in the exposure of observable factors to the latent ones. For example, SMB

loads on both the first and second factors, HML mostly on the third one, and Momentum almost

exclusively on the fourth factor. RMW loads substantially on at least four factors (including the

sixth one), and CMA loads mostly on the same factor as HML. However, CMA and HML are still

strongly distinguished by a differential exposure to the other factors.

Macro factors load onto these fundamental factors in nontrivial ways. IP is mostly exposed to

the sixth factor (to which RMW and CMA are exposed as well). The first JLN factor seems exposed

uniformly to all risks sources (but its overall risk premium is insignificant because these exposures

are small in absolute level, and the factor is very noisy, as explained above).

Finally, both the liquidity factor of Pástor and Stambaugh (2003) and the intermediary factor of

He et al. (2016) are strongly exposed to the first latent factor.

8.5 From the Individual Risk Premium to Multifactor Risk Premia

The three-pass method presented in this paper achieves an estimate of risk premia (and their standard

error) associated with each factor by relating each factor in gt individually to the priced latent factors

vt. At the same time, as discussed in Section 2, the risk premia we estimate can be interpreted as

those of a multifactor model in which all observable factors in gt appear directly (together with

some additional latent factors). The rotation-invariance result of Section 2 guarantees that this

interpretation always holds. Similarly, the standard errors reported in Tables 5 and 6 are the same

9The economic significance is low for this factor in monthly equity data, as was already pointed out in He et al.
(2016); our results here match the results in that paper, which only controls for the market in two-pass regressions.
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standard errors as those one would obtain in a two-pass cross-sectional regression using as factors ĝt

and any (p− d) latent factor estimates.

Importantly, this is true even when the factors in ĝt are highly correlated. For example, the

market and liquidity factors both load highly on the first principal component and are therefore

highly correlated. One might expect that in a two-pass regression where both factors are included,

it would be hard to separately identify the two risk premia. Instead, the two individual risk premia

are well identified (as can be seen from the standard errors) because these two factors are simply a

rotation of a well-identified model, as implied by the invariance result.

9 Conclusion

We propose a three-pass methodology to estimate the risk premium of observable factors in a linear

asset pricing model, that is consistent even when not all factors in the model are specified and

observed. The methodology relies on a simple invariance result that states that to correct the

omitted variable problem in cases where not all factors are observed, it is sufficient to control for

enough factors to span the entire factor space when running cross-sectional regressions. In these

cases, the risk premium for observable factors will be consistent even though the risk exposures

cannot be identified. We propose to employ PCA to recover the factor space and effectively use the

PCs as controls in the cross-sectional regressions together with the observable factors.

Equally important to what we can recover is what we cannot recover if some factors are omitted:

how the pricing kernel loads onto the observed factors, as well as the set of true risk exposures to

each factor. These can only be pinned down under much stronger assumptions – by identifying all

the factors that drive the pricing kernel, and explicitly specifying how they enter the pricing kernel.

Instead, a notable property of factor risk premia is precisely that they can be recovered even without

specifying all factors, and this is what we focus on in this paper.

The main advantage of our methodology is that it provides a systematic way to tackle the concern

that the model predicted by theory is misspecified because of omitted factors. Rather than relying

on arbitrarily chosen “control” factors or computing risk premia only on subsets of the test assets,

our methodology utilizes the large dimension of testing assets available to control for omitted factors

in the cross-sectional regression. It also explicitly takes into account the possibility of measurement

error in any observed factor.

Application of the methodology to workhorse factor models using equity test assets yields several

compelling results. Contrary to most existing estimates, we find out that the risk premium estimate

associated with market risk exposure is positive and significant, and close to the time-series average

excess return of the market portfolio. This confirms that our methodology correctly recovers the risk

premia of the market (and similar results hold for most other tradable factors), thus mitigating mis-

specification concerns. The most interesting results appear for non-tradable factors. Many standard

macroeconomic factors appear insignificant, whereas factors related to various market frictions (like

liquidity and intermediary leverage) appear strongly significant when considered as part of richer
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linear pricing models that include additional factors.

Although in this paper we apply the three-pass methodology to a standard set of 202 equity test

portfolios, this methodology can be directly applied to even larger cross sections, for example those

that include other asset classes or international markets. This is because the inference is derived

under the assumption that the number of assets n increases to ∞. We leave for future work a study

of larger cross sections that may yield novel insights about the pricing of securities across markets

and asset classes.
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10 Figures and Tables

Figure 1: Histograms of the Standardized Estimates
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Note: The left panels provide the histograms of the standardized two-pass risk premia estimates using the Fama-
MacBeth approach for standard error estimation, whereas the right panels provide the histograms of the standardized
three-pass estimates using asymptotic standard errors. We fix n = 200 and T = 600.
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Figure 2: First Eight Eigenvalues of the Covariance Matrix of 202 Equity Portfolios
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Note: The left panel reports the first eight eigenvalues of the covariance matrix of our 202 test portfolios. The right
panel zooms in to the eigenvalues two through eight.
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Figure 3: Predicted and Realized Average Excess Returns in a Six-Factor Model
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(b) Industry-sorted
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(d) ME and Variance-sorted
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(e) ME and Net Issuance-sorted
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(f) ME and Beta-sorted
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(g) ME and Accruals-sorted
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(h) ME and Momentum

Note: This figure reports the predicted average excess returns of the 202 test portfolios against the realized average
excess returns. Each panel highlights a different set of test assets. The solid line is the 45-degree line.

38



Figure 4: Cumulative Factor Time Series with and without Measurement Error
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Note: This figure reports the time series of cumulative factors for RmRf, SMB, HML, and IP (thin line) together
with the time series obtained from removing measurement error from the factor (thick line).
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Table 1: Simulation Results for n = 50

Two-Pass Estimator Three-Pass Estimators

p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.866 0.867 0.476 0.752 0.422 0.707 0.414 0.697

RmRf 0.372 -0.766 0.853 -0.394 0.790 -0.351 0.759 -0.349 0.752

50 SMB 0.229 -0.136 0.262 -0.107 0.418 -0.092 0.416 -0.084 0.416

HML 0.209 -0.013 0.255 -0.064 0.292 -0.060 0.299 -0.056 0.304

IP -0.003 0.001 0.079 0.002 0.015 0.002 0.016 0.002 0.018

γ0 0.546 0.929 0.945 0.165 0.403 0.087 0.368 0.137 0.382

RmRf 0.372 -0.837 0.842 -0.129 0.449 -0.060 0.430 -0.114 0.442

200 SMB 0.229 -0.129 0.130 -0.058 0.221 -0.044 0.218 -0.041 0.218

HML 0.209 -0.016 0.078 -0.042 0.167 -0.034 0.167 -0.029 0.167

IP -0.003 -0.006 0.109 0.001 0.007 0.001 0.007 0.001 0.008

γ0 0.546 0.950 0.990 0.049 0.280 -0.039 0.277 0.049 0.291

RmRf 0.372 -0.861 0.863 -0.030 0.305 0.048 0.307 -0.040 0.319

600 SMB 0.229 -0.129 0.155 -0.043 0.137 -0.030 0.133 -0.030 0.133

HML 0.209 -0.024 0.026 -0.033 0.108 -0.020 0.106 -0.018 0.105

IP -0.003 -0.022 0.165 0.0005 0.004 0.0002 0.004 0.0005 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 50,
and T = 50, 200, and 600, respectively. The true data-generating process has five factors, and the parameters
are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true
zero-beta rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are
provided in the “True” column. All numbers are in percentages.
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Table 2: Simulation Results for n = 100

Two-Pass Estimator Three-Pass Estimators

p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.802 0.804 0.484 0.666 0.407 0.578 0.387 0.555

RmRf 0.372 -0.780 0.843 -0.469 0.783 -0.386 0.699 -0.366 0.680

50 SMB 0.229 -0.084 0.231 -0.045 0.405 -0.041 0.407 -0.039 0.409

HML 0.209 0.106 0.258 0.012 0.292 -0.012 0.301 -0.015 0.305

IP -0.003 0.001 0.068 0.002 0.015 0.001 0.017 0.001 0.018

γ0 0.546 0.838 0.877 0.418 0.508 0.166 0.279 0.151 0.267

RmRf 0.372 -0.833 0.834 -0.428 0.581 -0.164 0.387 -0.149 0.380

200 SMB 0.229 -0.073 0.073 -0.011 0.214 -0.015 0.215 -0.015 0.215

HML 0.209 0.147 0.156 0.030 0.163 -0.002 0.164 -0.004 0.165

IP -0.003 -0.005 0.092 0.002 0.006 0.001 0.007 0.0005 0.007

γ0 0.546 0.846 0.913 0.412 0.458 0.067 0.194 0.062 0.192

RmRf 0.372 -0.846 0.853 -0.430 0.498 -0.072 0.253 -0.067 0.252

600 SMB 0.229 -0.067 0.112 0.001 0.126 -0.007 0.127 -0.006 0.127

HML 0.209 0.149 0.153 0.032 0.103 -0.001 0.101 -0.002 0.101

IP -0.003 -0.016 0.142 0.002 0.004 0.0004 0.004 0.0004 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 100,
and T = 50, 200, and 600, respectively. The true data-generating process has five factors, and the parameters
are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true
zero-beta rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are
provided in the “True” column. All numbers are in percentages.
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Table 3: Simulation Results for n = 200

Two-Pass Estimators Three-Pass Estimators

p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.662 0.669 0.330 0.551 0.293 0.429 0.289 0.423

RmRf 0.372 -0.620 0.681 -0.295 0.683 -0.273 0.591 -0.270 0.589

50 SMB 0.229 -0.092 0.229 -0.067 0.413 -0.029 0.411 -0.028 0.412

HML 0.209 0.028 0.238 -0.028 0.314 -0.030 0.318 -0.030 0.319

IP -0.003 0.0004 0.063 0.001 0.016 0.001 0.017 0.001 0.018

γ0 0.546 0.701 0.753 0.039 0.302 0.107 0.186 0.103 0.182

RmRf 0.372 -0.667 0.667 -0.019 0.411 -0.103 0.334 -0.099 0.332

200 SMB 0.229 -0.082 0.082 -0.051 0.221 -0.010 0.214 -0.010 0.214

HML 0.209 0.036 0.062 -0.010 0.169 -0.014 0.170 -0.014 0.170

IP -0.003 -0.010 0.098 0.0001 0.007 0.0005 0.007 0.0005 0.008

γ0 0.546 0.710 0.794 -0.139 0.233 0.039 0.133 0.036 0.132

RmRf 0.372 -0.679 0.689 0.151 0.294 -0.039 0.217 -0.037 0.217

600 SMB 0.229 -0.078 0.121 -0.043 0.134 -0.006 0.126 -0.006 0.126

HML 0.209 0.034 0.052 0.000 0.100 -0.006 0.100 -0.005 0.100

IP -0.003 -0.033 0.161 -0.001 0.005 0.0003 0.004 0.0003 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 200,
and T = 50, 200, and 600, respectively. The true data-generating process has five factors, and the parameters
are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true
zero-beta rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are
provided in the “True” column. All numbers are in percentages.

Table 4: Simulation Results for the Number of Factors

n = 50 n = 100 n = 200

T Median Stderr Median Stderr Median Stderr

50 3 0.66 3 0.53 5 0.79

200 3 0.64 4 0.83 5 0.14

600 4 0.50 5 0.40 5 0.40

Note: In this table, we report the median (Column “Median”) and the standard error (Column “Stderr”) of the
estimates for the number of factors. The true number of factors in the data generating process is five.
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Table 5: Three-Pass Regression: Empirical Results (I)

FM 3-pass, p̆ = 4 3-pass, p̆ = 5 3-pass, p̆ = 6

Model Factors Avg ret γ stderr γ stderr R2
g γ stderr R2

g γ stderr R2
g

CAPM Intercept 0.40 1.28∗∗∗ (0.21) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

RmRf 0.50 −0.20 (0.28) 0.37∗ (0.20) 98.18 0.37∗ (0.21) 98.93 0.35 (0.22) 99.08

FF3 Intercept 0.40 1.53∗∗∗ (0.17) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

RmRf 0.50 −0.57∗∗ (0.25) 0.37∗ (0.20) 98.18 0.37∗ (0.21) 98.93 0.35 (0.22) 99.08

SMB 0.23 0.17 (0.13) 0.23∗ (0.13) 93.90 0.23∗ (0.13) 94.88 0.23∗ (0.13) 97.19

HML 0.34 0.23∗ (0.13) 0.21∗ (0.11) 66.86 0.21∗ (0.11) 67.90 0.20∗ (0.11) 75.37

FF4 Intercept 0.40 0.90∗∗∗ (0.15) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

RmRf 0.50 0.05 (0.23) 0.37∗ (0.20) 98.18 0.37∗ (0.21) 98.93 0.35 (0.22) 99.08

SMB 0.23 0.17 (0.13) 0.23∗ (0.13) 93.90 0.23∗ (0.13) 94.88 0.23∗ (0.13) 97.19

HML 0.34 0.41∗∗∗ (0.13) 0.21∗ (0.11) 66.86 0.21∗ (0.11) 67.90 0.20∗ (0.11) 75.37

Mom 0.71 0.81∗∗∗ (0.17) 0.75∗∗∗ (0.18) 91.18 0.75∗∗∗ (0.18) 91.52 0.74∗∗∗ (0.18) 92.19

FF5 Intercept 0.40 1.01∗∗∗ (0.15) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

RmRf 0.50 −0.08 (0.24) 0.37∗ (0.20) 98.18 0.37∗ (0.21) 98.93 0.35 (0.22) 99.08

SMB 0.23 0.27∗∗ (0.13) 0.23∗ (0.13) 93.90 0.23∗ (0.13) 94.88 0.23∗ (0.13) 97.19

HML 0.34 0.02 (0.13) 0.21∗ (0.11) 66.86 0.21∗ (0.11) 67.90 0.20∗ (0.11) 75.37

RMW 0.25 0.30∗∗∗ (0.10) 0.13∗∗ (0.06) 33.93 0.13∗∗ (0.07) 37.42 0.13∗ (0.07) 45.81

CMA 0.30 0.37∗∗∗ (0.09) 0.14∗ (0.08) 44.58 0.14∗ (0.08) 45.68 0.13 (0.08) 55.38

HXZ Intercept 0.40 0.84∗∗∗ (0.15) 0.62 (0.10) 0.59 (0.11) 0.62 (0.13)

Mkt 0.49 0.06 (0.25) 0.30 (0.21) 98.37 0.33 (0.22) 98.71 0.30 (0.23) 99.06

ME 0.31 0.39∗∗∗ (0.13) 0.31∗∗ (0.14) 90.90 0.30∗∗ (0.13) 92.10 0.31∗∗ (0.13) 94.48

IA 0.41 0.27∗∗∗ (0.10) 0.14∗ (0.08) 46.14 0.14∗ (0.08) 46.68 0.13∗ (0.08) 53.68

ROE 0.56 0.59∗∗∗ (0.13) 0.28∗∗∗ (0.09) 50.88 0.28∗∗∗ (0.09) 51.68 0.28∗∗∗ (0.09) 55.64

Note: The table reports the results of standard Fama-MacBeth regression and three-pass cross-sectional regression
with four, five, and six factors. Each panel corresponds to a different model. The first column shows the average
risk-free rate in the data (row “intercept”) and the average excess returns of factors when they are tradable. The
“FM” set of results corresponds to standard Fama-MacBeth estimation of the model. The other sets correspond to
the three-pass method, using four to six latent factors. For each set of results, the first column reports the zero-beta
rate and the risk-premium estimates for the factors. The second column reports the standard error. The column
denoted R2

g reports the R2 of the third pass, the regression of gt onto the estimated latent factors.
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Table 6: Three-Pass Regression: Empirical Results (II)

FM 3-pass, p̆ = 4 3-pass, p̆ = 5 3-pass, p̆ = 6

Model Factors Avg ret γ stderr γ stderr R2
g γ stderr R2

g γ stderr R2
g

BAB Intercept 0.40 1.11∗∗∗ (0.19) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

Bab 0.84 0.55∗∗ (0.24) 0.55∗∗∗ (0.11) 45.40 0.55∗∗∗ (0.11) 45.85 0.54∗∗∗ (0.12) 49.00

QMJ Intercept 0.40 1.10∗∗∗ (0.15) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

Qmj 0.35 0.03 (0.13) 0.07 (0.08) 59.63 0.07 (0.08) 63.13 0.07 (0.09) 70.43

IP Intercept 0.40 1.03∗∗∗ (0.19) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

IP −0.13∗ (0.07) −0.00 (0.00) 0.13 −0.00 (0.00) 0.19 −0.00 (0.01) 1.55

JLN Intercept 0.43 0.94∗∗∗ (0.19) 0.55 (0.10) 0.56 (0.12) 0.59 (0.13)

Factor 1 70.25∗∗∗ (21.62) 1.74 (1.32) 0.60 1.70 (1.28) 0.82 1.61 (1.28) 0.97

Factor 2 3.84 (24.02) −2.25 (1.89) 2.57 −2.22 (1.88) 2.60 −2.01 (1.94) 3.66

Factor 3 −1.71 (15.04) 1.09 (1.78) 3.58 1.02 (1.91) 4.43 1.09 (2.01) 6.65

Liq. Intercept 0.40 1.06∗∗∗ (0.20) 0.55 (0.09) 0.55 (0.11) 0.57 (0.13)

Liquidity 0.02 (0.97) 0.26∗∗ (0.12) 11.99 0.26∗∗ (0.12) 12.02 0.25∗∗ (0.12) 12.02

Interm. Intercept 0.43 0.85∗∗∗ (0.23) 0.61 (0.10) 0.61 (0.11) 0.63 (0.13)

He 0.02 (0.64) 0.30 (0.27) 60.10 0.29 (0.29) 62.08 0.28 (0.30) 62.13

Adrian 1.25∗∗∗ (0.32) 0.79∗∗∗ (0.16) 49.28 0.78∗∗∗ (0.17) 49.28 0.77∗∗∗ (0.17) 51.58

Note: The table reports the results of standard Fama-MacBeth regression and three-pass cross-sectional regression
with four, five, and six factors. Each panel corresponds to a different model. The first column shows the average
risk-free rate in the data (row “intercept”) and the average excess returns of factors when they are tradable. The
“FM” set of results corresponds to standard Fama-MacBeth estimation of the model. The other sets correspond to
the three-pass method, using four to six latent factors. For each set of results, the first column reports the zero-beta
rate and the risk-premium estimates for the factors. The second column reports the standard error. The column
denoted R2

g reports the R2 of the third pass, the regression of gt onto the estimated latent factors.
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Table 7: Loading of Observable Factors onto Latent Factors (% of Variation Explained)

Model Factors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

CAPM RmRf 91.0 6.3 1.7 0.1 0.8 0.2

FF3 RmRf 91.0 6.3 1.7 0.1 0.8 0.2
SMB 31.0 64.0 0.6 0.9 1.0 2.4
HML 7.0 1.3 75.5 4.9 1.4 9.9

FF4 RmRf 91.0 6.3 1.7 0.1 0.8 0.2
SMB 31.0 64.0 0.6 0.9 1.0 2.4
HML 7.0 1.3 75.5 4.9 1.4 9.9
Mom 3.1 0.3 2.0 93.5 0.4 0.7

FF5 RmRf 91.0 6.3 1.7 0.1 0.8 0.2
SMB 31.0 64.0 0.6 0.9 1.0 2.4
HML 7.0 1.3 75.5 4.9 1.4 9.9
RMW 17.2 37.4 15.4 4.1 7.6 18.3
CMA 19.8 0.0 60.6 0.1 2.0 17.5

HXZ Mkt 91.7 5.7 1.8 0.1 0.3 0.4
ME 28.4 60.8 5.7 1.3 1.3 2.5
IA 23.1 1.6 61.2 0.0 1.0 13.0
ROE 16.2 27.0 0.7 47.5 1.4 7.1

BAB Bab 0.9 3.6 72.7 15.4 0.9 6.4

QMJ Qmj 57.3 15.9 2.4 9.0 5.0 10.4

IP IP Growth 2.2 0.5 4.4 1.0 3.8 88.0

JLN Factor 1 21.3 10.1 27.3 2.8 22.6 15.9
Factor 2 59.1 7.1 0.0 4.1 0.7 29.1
Factor 3 19.9 0.2 21.0 12.8 12.8 33.3

Liq. Liquidity 95.0 2.8 1.8 0.2 0.2 0.0

Interm. He et al. 81.2 12.5 0.1 2.9 3.2 0.1
Adrian et al. 20.3 6.8 52.0 16.4 0.0 4.5

Note: The table reports the decomposition of the variance of the observable factors gt explained by the six latent
factors. Each row adds up to 100%.
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Appendix A Mathematical Proofs

Appendix A.1 Proofs of Main Theorems

Proof of Proposition 1. Without loss of generality, we assume that η is a 1 × p vector. Consider

an invertible matrix H such that its first row is equal to η. The model (1) can then be written

equivalently as:

rt =ιnγ0 + α+ βH−1Hγ + βH−1Hvt + ut

:=ιnγ0 + α+ β̃γ̃ + β̃ṽt + ut,

where β̃ = βH−1, γ̃ = Hγ, and ṽt = Hvt. The expected excess return of a portfolio with no

idiosyncratic risk or alpha, which has unit beta on the ith factor in ṽt and zero beta on the rest

factors is E(γ0 + eᵀi γ̃ + eᵀi ṽt) − γ0 = γ̃i. By definition, the risk premium of ṽt is γ̃. Since g̃t = eᵀ1ṽt,

its risk premium is eᵀ1γ̃ = eᵀ1Hγ = ηγ.

To establish the second statement, suppose (ṽ1 : ṽ2 : . . . : ṽT ) is the new set of factors. Because

it shares the same row space as (v1 : v2 : . . . : vT ), there exists an invertible matrix H, such that

ṽt = Hvt, for all t = 1, 2, . . . , T . By the above result, the risk premium of ṽt, γ̃, is therefore Hγ.

Since gt = ηvt, it follows that gt = ηH−1ṽt. Applying the above result again, we have the risk

premium of gt is equal to ηH−1Hγ = ηγ.

Proof of Theorem 1. We take two steps to prove it.

Step 1: Since

R̄ᵀR̄− V̄ ᵀβᵀβV̄ = ŪᵀβV̄ + V̄ ᵀβᵀŪ + ŪᵀŪ ,

then by Weyl’s inequality, we have, for 1 ≤ j ≤ p,∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )
∣∣ ≤ ∥∥ŪᵀŪ

∥∥+
∥∥ŪᵀβV̄

∥∥+
∥∥V̄ ᵀβᵀŪ

∥∥ .
We analyze the terms on the right-hand side one by one.

(i) To begin with, write Γu = (γn,tt′). Note that∥∥ŪᵀŪ − nΓu
∥∥ ≤ ‖UᵀU − nΓu‖F + 2 ‖ιT ūᵀU‖F +

∥∥ιT ūᵀūιᵀT∥∥F
.

By Assumption 3(iv),

E ‖UᵀU − nΓu‖2F =
T∑
s=1

T∑
t=1

E

 n∑
j=1

(ujsujt − E(ujsujt))

2

≤ KnT 2, (A.1)
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and by Assumption 3(i),

E ‖ū‖2F = T−2E

n∑
i=1

T∑
t=1

T∑
t′=1

uituit′ ≤ nT−2
T∑
t=1

T∑
t′=1

|γn,tt′ | ≤ KnT−1, (A.2)

E ‖U‖2F =

n∑
i=1

T∑
t=1

Eu2
it ≤ n

T∑
t=1

γn,tt ≤ KnT, (A.3)

it follows that

‖ιT ūᵀU‖F ≤ ‖ιT ‖F ‖ū
ᵀ‖F ‖U‖F = Op(nT

1/2),
∥∥ιT ūᵀūιᵀT∥∥F

≤ ‖ιT ‖2F ‖ū
ᵀ‖2F = Op(n),

and hence that ∥∥ŪᵀŪ − nΓu
∥∥ = Op(n

1/2T ) +Op(nT
1/2). (A.4)

Next, writing ρn,st = γn,st/
√
γn,ssγn,tt, by Assumption 3(i) and the fact that |ρn,st| ≤ 1,

‖Γu‖2F =

T∑
s=1

T∑
t=1

γ2
n,st =

T∑
s=1

T∑
t=1

γn,ssγn,ttρ
2
n,st

≤K
T∑
s=1

T∑
t=1

|γn,ssγn,tt|1/2|ρn,st| ≤ K
T∑
s=1

T∑
t=1

|γn,st| ≤ KT, (A.5)

so we have n ‖Γu‖ = Op(nT
1/2).

Therefore, we obtain∥∥ŪᵀŪ
∥∥ ≤ ∥∥ŪᵀŪ − nΓu

∥∥+ n ‖Γu‖ = Op(nT
1/2) +Op(n

1/2T ). (A.6)

(ii) By Assumption 5, we have ‖β‖MAX ≤ K. By Assumption 3(ii)(iii), we have

E ‖Uᵀβ‖2F =E

p∑
j=1

T∑
t=1

(
n∑
i=1

βijuit

)2

≤ K
p∑
j=1

T∑
t=1

n∑
i=1

n∑
i′=1

|σii′,t| ≤ KnT, (A.7)

E ‖ūᵀβ‖2F ≤E

p∑
k=1

(
n∑
i=1

ūiβik

)2

≤ KT−2
p∑

k=1

n∑
i=1

n∑
i′=1

T∑
t=1

T∑
t′=1

∣∣σii′,tt′∣∣ ≤ KnT−1, (A.8)

it follows that ∥∥Ūᵀβ
∥∥

F
≤ ‖Uᵀβ‖F + ‖ιT ‖F ‖ū

ᵀβ‖F = Op(n
1/2T 1/2). (A.9)

Also, by Assumption 4,

T−1
∥∥V̄ V̄ ᵀ

∥∥
MAX

≤
∥∥T−1V V ᵀ − Σv

∥∥
MAX

+ ‖Σv‖MAX + ‖v̄v̄ᵀ‖MAX ≤ K, (A.10)

47



we have ∥∥V̄ ∥∥ ≤ ∥∥V̄ V̄ ᵀ
∥∥1/2 ≤ K

∥∥V̄ V̄ ᵀ
∥∥1/2

MAX
= Op(T

1/2). (A.11)

Therefore, we have ∥∥V̄ ᵀβᵀŪ
∥∥ =

∥∥ŪᵀβV̄
∥∥ ≤ ∥∥Ūᵀβ

∥∥
F

∥∥V̄ ∥∥ = Op(n
1/2T ).

Combining (i) and (ii), we have for 1 ≤ j ≤ p,

n−1T−1
∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )

∣∣ = Op(n
−1/2 + T−1/2) = op(1). (A.12)

(iii) Moreover, by Assumption 5, (A.11), and Weyl’s inequality again,∣∣∣n−1T−1λj(V̄
ᵀβᵀβV̄ )− T−1λj(V̄

ᵀΣβV̄ )
∣∣∣ ≤ ∥∥∥n−1βᵀβ − Σβ

∥∥∥T−1
∥∥V̄ ᵀ

∥∥∥∥V̄ ∥∥ = op(1),

and combined with Assumption 4, and the fact that ‖v̄‖ ≤ K ‖v̄‖MAX = Op(T
−1/2),∣∣∣∣T−1λj(V̄

ᵀΣβV̄ )− λj
((

Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣
≤
∥∥T−1V̄ V̄ ᵀ − Σv

∥∥∥∥∥Σβ
∥∥∥ ≤ (∥∥T−1V V ᵀ − Σv

∥∥+ ‖v̄v̄ᵀ‖
) ∥∥∥Σβ

∥∥∥ = op(1),

where we also use the fact that the non-zero eigenvalues of V̄ ᵀΣβV̄ are identical to the non-zero

eigenvalues of
(
Σβ
)1/2

V̄ V̄ ᵀ
(
Σβ
)1/2

. Therefore, for 1 ≤ j ≤ p,∣∣∣∣n−1T−1λj(R̄
ᵀR̄)− λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣ = op(1). (A.13)

Step 2: By Assumptions 4 and 5, there exists 0 < K1,K2 <∞, such that

K1 < λmin(Σv)λmin(Σβ) ≤ λmin(ΣvΣβ) ≤ λmax(ΣvΣβ) ≤ λmax(Σv)λmax(Σβ) < K2.

Therefore the eigenvalues of (Σβ)1/2Σv(Σβ)1/2 are bounded away from 0 and ∞, we have by (A.13),

for 1 ≤ j ≤ p,

K1 < n−1T−1λj(R̄
ᵀR̄) < K2. (A.14)

On the other hand, we can write

R̄R̄ᵀ = β̃V̄ V̄ ᵀβ̃ᵀ + Ū
(
IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄

)
Ūᵀ, (A.15)

where β̃ = β + UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) of Theorem 4.3.1 and (4.3.14) of Corollary 4.3.12 in Horn
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and Johnson (2013), for p+ 1 ≤ j ≤ n, we have

λj(R̄R̄
ᵀ) ≤ λj−p

(
Ū(IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ )Ūᵀ)+ λp+1(β̃V̄ V̄ ᵀβ̃) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

Moreover, by (A.6), we have

λ1(Ū Ūᵀ) =
∥∥ŪᵀŪ

∥∥ = Op(nT
1/2) +Op(n

1/2T ),

hence for p+ 1 ≤ j ≤ n, there exists some K > 0, such that

n−1T−1λj(R̄
ᵀR̄) ≤ K(n−1/2 + T−1/2). (A.16)

Now we define, for 1 ≤ j ≤ n,

f(j) = n−1T−1λj(R̄
ᵀR̄) + j × φ(n, T ).

(A.14) and (A.16) together imply that for 1 ≤ j ≤ p,

f(j)− f(p+ 1) =n−1T−1
(
λj(R̄

ᵀR̄)− λp+1(R̄ᵀR̄)
)

+ (j − p− 1)φ(n, T )

>λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)
+ op(1) > K,

for some K > 0; and for p+ 1 < j ≤ n, we have

P(f(j) < f(p+ 1)) = P
(
(j − p− 1)φ(n, T ) < n−1T−1

(
λp+1(R̄ᵀR̄)− λj(R̄ᵀR̄)

))
→ 0.

Therefore, p+ 1 = arg min1≤j≤p f(j) holds with probability approaching 1, and hence p̂
p−→ p.

Proof of Theorem 2. Let Λ̂ be the p× p diagonal matrix of the p largest eigenvalues of n−1T−1R̄ᵀR̄.

We define a p× p matrix:

H = n−1T−1Λ̂−1V̂ V̄ ᵀβᵀβ. (A.17)

We use the following decomposition:

Γ̃−

(
γ0

Hγ

)
=
(

(ιn : β̂)ᵀ(ιn : β̂)
)−1

(ιn : β̂)ᵀ
((
β − β̂H

)
γ + βv̄ + α+ ū

)
=

(
0

Hv̄

)
+

{
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1{
1

n

(
ιᵀnα

H−ᵀβᵀα

)
+

1

n

(
ιᵀnū+ ιᵀn(β − β̂H)γ

H−ᵀβᵀū+H−ᵀβᵀ(β − β̂H)γ

)

+
1

n

(
ιᵀn(β − β̂H)v̄

(β̂ − βH−1)ᵀ(α+ ū) +H−ᵀβᵀ(β − β̂H)v̄ + (β̂ᵀ −H−ᵀβᵀ)(β − β̂H)(γ + v̄)

)}
. (A.18)

49



Note that

η̂ − ηH−1 = ηH−1
(
HV̄ − V̂

)
V̂ ᵀ(V̂ V̂ ᵀ)−1 + Z̄V̂ ᵀ(V̂ V̂ ᵀ)−1,

and by Lemma 7(a) and (b), we have

η̂ − ηH−1 = T−1Z̄V̄ ᵀHᵀ +Op(n
−1 + T−1). (A.19)

Moreover, by Assumptions 4 and 6, as well as Lemma 2, we have∥∥T−1Z̄V̄ ᵀHᵀ
∥∥

MAX
≤
(∥∥T−1ZV ᵀ

∥∥
MAX

+ ‖z̄v̄ᵀ‖MAX

)
‖H‖MAX = Op(T

−1/2),

it follows that

η̂ − ηH−1 = Op(n
−1 + T−1/2). (A.20)

Using this, and by Lemmas 2, 4, 5, 6, 7, and 8, we have

Γ̂−

(
γ0

ηγ

)
=

(
0

T−1Z̄V̄ ᵀ(Σv)−1γ + ηv̄

)

+

(
1 0

0 η

){
1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

×

{
1

n

(
ιᵀnα

βᵀα

)
+ op(n

−1/2 + T−1/2)

}
.

Moreover, by Cramér-Wold theorem and Lyapunov’s central limit theorem, we can obtain

n−1/2

(
ιᵀnα

βᵀα

)
L−→ N

((
0

0

)
,

(
1 βᵀ0
β0 Σβ

)
(σα)2

)
, (A.21)

where we use
∥∥n−1βᵀιn − β0

∥∥
MAX

= o(1) and
∥∥n−1βᵀβ − Σβ

∥∥
MAX

= o(1). Therefore, by the Delta

method, we have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
.

Similarly, we have

n1/2
(

0 η
){ 1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

× 1

n

(
ιᵀnα

βᵀα

)
L−→ N (0,Υ) ,

where

Υ = (σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.
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On the other hand, since

vec
(
T−1Z̄V̄ ᵀ (Σv)−1 γ

)
=
(
γᵀ (Σv)−1 ⊗ Id

) (
vec(T−1ZV ᵀ) + vec(z̄v̄ᵀ)

)
=
(
γᵀ (Σv)−1 ⊗ Id

)
vec(T−1ZV ᵀ) +Op(T

−1),

it follows from Assumption 11 that

T 1/2

(
T−1Z̄V̄ ᵀ (Σv)−1 γ

ηv̄

)
L−→N

((
0

0

)
,

( (
γᵀ (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 γ ⊗ Id

) (
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ

· ηΠ22η
ᵀ

))
.

Therefore, by the Delta method, we obtain:

T 1/2
(
T−1Z̄V̄ ᵀ (Σv)−1 γ + ηv̄

)
L−→ N (0,Φ) ,

where

Φ =
(
γᵀ (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 γ ⊗ Id

)
+
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ

+ ηΠ21

(
(Σv)−1 γ ⊗ Id

)
+ ηΠ22η

ᵀ.

By the same asymptotic independence argument as in the proof of Theorem 3 in Bai (2003), we

establish the desired result:

(
T−1Φ + n−1Υ

)−1/2
(γ̂ − ηγ)

L−→ N (0, Id).

Proof of Theorem 3. By Assumptions 4, 5, and 10, Lemma 4, (A.8), and (A.21), we have

n−1ιᵀnr̄ = γ0 + βᵀ0γ +Op(n
−1/2 + T−1/2),

n−1r̄ᵀr̄ = γᵀΣβγ + γ2
0 + (σα)2 + γᵀβ0γ0 + βᵀ0γγ0 +Op(n

−1/2 + T−1/2),

it then follows that

n−1r̄ᵀMιn r̄ = n−1r̄ᵀr̄ − (n−1ιᵀnr̄)
2 = γᵀ(Σβ − β0β

ᵀ
0)γ + (σα)2 + op(1).

On the other hand, by Assumption 4, Lemma 3, (A.2), we have

n−1
∥∥∥Hᵀβ̂ᵀMιn r̄ − βᵀMιn r̄

∥∥∥
MAX

=
∥∥∥(Hᵀβ̂ᵀ − βᵀ)Mιn(α+ βγ + βv̄ + ū)

∥∥∥
MAX

≤n−1
∥∥∥Hᵀβ̂ᵀ − βᵀ

∥∥∥
F
‖α+ βγ + βv̄ + ū‖F = Op(n

−1/2 + T−1/2).
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Similarly, we have

n−1βᵀMιn r̄ =
(

Σβ − β0β
ᵀ
0

)
γ + op(1),

n−1βᵀMιnβ = Σβ − β0β
ᵀ
0 + op(1),

therefore, we obtain

(n−1βᵀMιn r̄)
ᵀ (n−1βᵀMιnβ

)−1 (
n−1βᵀMιn r̄

)
= γᵀ

(
Σβ − β0β

ᵀ
0

)
γ + op(1),

which establishes R̂2
v

p−→ R2
v.

By Lemma 2, (A.39), (A.20) and the fact that ‖η‖MAX ≤ K, we have∥∥∥T−1η̂V̂ V̂ ᵀηᵀ − ηΣvηᵀ
∥∥∥

MAX

≤
∥∥(η̂ − ηH−1)(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥(η̂ − ηH−1)H−ᵀηᵀ

∥∥
MAX

+
∥∥ηH−1(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥η(H−1H−ᵀ − Σv)ηᵀ

∥∥
MAX

=Op(n
−1/2 + T−1/2).

Also, by Assumptions 4, 6, and 11, we have

T−1ḠḠᵀ = T−1(ηV̄ + Z̄)(ηV̄ + Z̄)ᵀ
p−→ ηΣvηᵀ + Σz,

hence it follows that R̂2
g

p−→ R2
g.

Proof of Theorem 4. We denote the estimators of V̄ and β based on p̆ as V̆ and β̆ respectively. We

can write V̆ ᵀ = (V̂ ᵀ : T 1/2ξ̆p+1:p̆), where ξ̆p+1:p̆ = (ξp+1 : ξp+2 : · · · : ξp̆) is a T × (p̆ − p) matrix, it

follows that

β̆ = T−1
(
R̄V̂ ᵀ : T 1/2R̄ξ̆p+1:p̆

)
=
(
β̂ : T−1/2R̄ξ̆p+1:p̆

)
.

Consider the singular value decomposition of R̄

n−1/2T−1/2R̄ = O1diag
(
λ

1/2
1 , λ

1/2
2 , . . . , λ

1/2
min(n,T )

)
Oᵀ

2 ,

where O1 and O2 are n×min(n, T ) and T ×min(n, T ) orthogonal matrices, respectively. Given that

n−1T−1R̄ᵀR̄(ξ1 : ξ2 : . . . ξp : ξp+1 . . . : ξp̆) = (ξ1 : ξ2 : . . . ξp : ξp+1 . . . : ξp̆)Λ̆,

we can select O2 such that the first p̆ columns of O2 coincide with (ξ1 : ξ2 : . . . ξp : ξp+1 . . . : ξp̆).

Also, we have

n−1/2T−1/2ς̆ᵀp+1:p̆R̄ = λ̆
1/2
p+1:p̆ξ̆

ᵀ
p+1:p̆, and n−1/2T−1/2R̄ξ̆p+1:p̆ = ς̆p+1:p̆λ̆

1/2
p+1:p̆,
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where λ̆p+1:p̆ = diag(λp+1, λp+2, . . . , λp̆), ς̆p+1:p̆ is an n× (p̆−p) matrix that corresponds to the p+ 1,

. . . , p̆− 1, p̆ columns of O1. As a result, we have

ς̆ᵀp+1:p̆β̂ = 0, V̂ ξ̆p+1:p̆ = 0, and β̆ =
(
β̂ : n1/2ς̆p+1:p̆λ̆

1/2
p+1:p̆

)
.

Moreover, by inverting block-diagonal matrices, we can decompose(
1

η̆

){
1

n

(
ιᵀnιn ιᵀnβ̆

β̆ᵀιn β̆ᵀβ̆

)}−1(
ιᵀn

β̆ᵀ

)

=

(
1

η̂

){
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1(
ιᵀn

β̂ᵀ

)

+

(
1

η̂

){
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1(
−ιᵀnς̆p+1:p̆λ̆

1/2
p+1:p̆∆

−1λ̆
1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
0

)

+

(
0

T−1/2n1/2Ḡξ̆p+1:p̆∆
−1λ̆

1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

) ) ,
where ∆ = λ̆

1/2
p+1:p̆

(
Ip̆−p − ς̆ᵀp+1:p̆ιn(ιᵀnMβ̂

ιn)−1ιᵀnς̆p+1:p̆

)
λ̆

1/2
p+1:p̆. This leads to

Γ̆− Γ̂ =

(
1

η̂

){
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1

×

(
−n−1ιᵀnς̆p+1:p̆λ̆

1/2
p+1:p̆∆

−1λ̆
1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄

0

)

+

(
0

T−1/2n−1/2Ḡξ̆p+1:p̆∆
−1λ̆

1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄

)
.

We analyze the right-hand side terms above in the following. First, since M
β̂
β̂ = 0 and ς̆ᵀp+1:p̆β̂ = 0,

we have

ς̆ᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄

=ς̆ᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
(α+ (β − β̂H)(v̄ + γ) + ū).

Since α is independent of ς̆p+1:p̆, we have

E
∥∥∥ς̆ᵀp+1:p̆α

∥∥∥2

F
=

p̆−p∑
j=1

E

(
n∑
i=1

ς̆p+1:p̆,ijαi

)2

= ‖ς̆p+1:p̆‖2F (σα)2 ≤ K,
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hence
∥∥∥ς̆ᵀp+1:p̆α

∥∥∥
F

= Op(1). By Lemma 3(c) and (A.2), we have

∥∥∥ς̆ᵀp+1:p̆(β − β̂H)
∥∥∥ = Op(1 + n1/2T−1/2),

∥∥∥ς̆ᵀp+1:p̆ū
∥∥∥ = Op(n

1/2T−1/2).

Because In − ιn(ιᵀnMβ̂
ιn)−1ιᵀnMβ̂

is idempotent, its operator norm is bounded, so that∥∥∥ς̆ᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥ = Op(1 + n1/2T−1/2).

Moreover, since λ̆
1/2
p+1:p̆∆

−1λ̆
1/2
p+1:p̆ is idempotent, and

∥∥n−1ιᵀnς̆p+1:p̆

∥∥ = Op(n
−1/2), it follows that∥∥∥n−1ιᵀnς̆p+1:p̆λ̆

1/2
p+1:p̆∆

−1λ̆
1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥ = Op(n

−1/2 + T−1/2).

On the other hand, by Lemma 1,∥∥∥ηV̄ ξ̆p+1:p̆

∥∥∥ =
∥∥∥η(V̄ −HV̂ )ξ̆p+1:p̆

∥∥∥ = Op(1 + n−1/2T 1/2).

Also, it follows from (A.15) that

R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ = Ū Ūᵀ + β̃V̄ V̄ ᵀβ̃ᵀ,

where β̃ = β+UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) and (4.3.2b) of Theorem 4.3.1 in Horn and Johnson (2013),

for p+ 1 ≤ j ≤ p̆,

λj+p(Ū Ū
ᵀ) + λn−1(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ λj+p(R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ λj(R̄R̄ᵀ) + λp+1(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ).

Since rank(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ p and rank(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ p, we obtain for p+ 1 ≤ j ≤ p̆,

λmin(n,T )(Ū Ū
ᵀ) ≤ λj+p(Ū Ūᵀ) ≤ λj(R̄R̄ᵀ) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

Following the random matrix theory in Bai (1999) on the limit of the extreme eigenvalues, we have

K ′(n−1 + T−1) ≤ n−1T−1λj(R̄R̄
ᵀ) ≤ K(n−1 + T−1),

so that
∥∥∥λ̆−1/2

p+1:p̆

∥∥∥ = Op((n
−1 +T−1)−1/2). By the independence of Z̄ and ξ̆p+1:p̆, we have

∥∥∥Z̄ξ̆p+1:p̆

∥∥∥ =

Op(1). It then follows that

T−1/2n−1/2
∥∥∥Ḡξ̆p+1:p̆∆

−1λ̆
1/2
p+1:p̆

∥∥∥ ≤T−1/2n−1/2
∥∥∥(ηV̄ + Z̄)ξ̆p+1:p̆λ̆

−1/2
p+1:p̆

∥∥∥∥∥∥λ̆1/2
p+1:p̆∆

−1λ̆
1/2
p+1:p̆

∥∥∥
=(n−1/2T−1/2 + n−1)

∥∥∥λ̆−1/2
p+1:p̆

∥∥∥ = Op(n
−1/2).
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We therefore obtain that∥∥∥T−1/2n−1/2Ḡξ̆p+1:p̆∆
−1λ̆

1/2
p+1:p̆ς̆

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥ = Op(n

−1/2 + T−1/2),

which conclude the proof.

Proof of Theorem 5. For any 1 ≤ t ≤ T , we have

ĝt − ηvt = (η̂ − ηH−1)(v̂t −Hv̄t) + (η̂ − ηH−1)Hv̄t + ηH−1(v̂t −Hv̄t)− ηv̄ (A.22)

By (A.34), we have

v̂t −Hv̄t =n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)
+ n−1T−1Λ̂−1

(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)
+ n−1T−1Λ̂−1V̂ V̄ ᵀβᵀūt. (A.23)

By Assumption 3(ii), we have

E ‖βᵀut‖2F = E

p∑
i=1

(
n∑
k=1

βkiukt

)2

≤ K
n∑
k=1

n∑
k′=1

|σkk′,t| ≤ Kn,

so that

‖βᵀūt‖F ≤ ‖β
ᵀut‖F + ‖βᵀū‖F = Op(n

1/2). (A.24)

By Assumption 3(i)(iv) and Assumption 12, using the fact that |ρn,st| ≤ 1, we have

E ‖Uᵀut‖2F =E
T∑
s=1

(
nγn,st +

n∑
k=1

(uksukt − E(uksukt))

)2

≤Kn2
T∑
s=1

γ2
n,st +KnT ≤ n2

T∑
s=1

|γn,st|+KnT = Kn2 +KnT,

E ‖ut‖2F ≤
n∑
k=1

Eu2
kt ≤

n∑
k=1

|τkk′ | ≤ K. (A.25)

Then from (A.2) and (A.51), it follows that∥∥Ūᵀūt
∥∥

F
≤
∥∥Ūᵀū

∥∥
F

+ ‖Uᵀut‖F + ‖ιT ‖F ‖ū
ᵀ‖F ‖ut‖F = Op(n+ n1/2T 1/2).

The above estimates, along with (A.9), Lemma 1, and ‖v̄t‖ = Op(1), lead to∥∥∥n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)∥∥∥
MAX

≤n−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
F

(∥∥Ūᵀβ
∥∥

F
‖v̄t‖+

∥∥Ūᵀūt
∥∥

F

)
= Op(n

−1 + T−1).
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Moreover, it follows from (A.2), (A.41), and (A.46) that∥∥∥n−1T−1Λ̂−1
(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)∥∥∥
MAX

≤Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

‖H‖
(∥∥V̄ Ūᵀβ

∥∥
MAX

‖v̄t‖+
∥∥V̄ Ūᵀ

∥∥
F

(‖ut‖F + ‖u‖F)
)

=Op(n
−1/2T−1/2 + T−1).

We thereby focus on the remaining term, which by Lemma 1, (A.11) and (A.24), satisfies

n−1T−1
∥∥∥Λ̂−1V̂ V̄ ᵀβᵀūt

∥∥∥
MAX

≤ Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ ∥∥∥
F

∥∥V̄ ᵀ
∥∥

F
‖βᵀūt‖MAX = Op(n

−1/2).

Therefore, we have

‖v̂t −Hv̄t‖MAX = Op(n
−1/2 + T−1). (A.26)

Then by (A.22), (A.23), and (A.19), we have∥∥∥ĝt − ηvt − (T−1Z̄V̄ ᵀHᵀHvt + n−1T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut − ηv̄
)∥∥∥

MAX
= op(n

−1/2 + T−1/2).

Next, we note that by Assumption 11 and Lemma 2,

T 1/2

(
T−1vec

(
Z̄V̄ ᵀHᵀHvt

)
ηv̄

)
= T 1/2

(
(vᵀtH

ᵀH ⊗ Id)vec(Z̄V̄ ᵀ)

ηv̄

)
L−→N

(
0,

( (
vᵀt (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 vt ⊗ Id

) (
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

· ηΠ22η
ᵀ

))
.

By (A.17) and Assumptions 5 and 13, we have

n−1/2T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut =n1/2η(βᵀβ)−1βᵀut
L−→ N

(
0, η

(
Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ
)
.

The desired result follows from the same asymptotic independence argument as in Bai (2003).

Proof of Theorem 6. Again, we assume p̂ = p. To prove the consistency of Φ̂, without loss of gener-

ality, we focus on the case of Π12, and show that

(γ̃ᵀ ⊗ Id) Π̂12η̂
ᵀ p−→

(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ. (A.27)

The proof for the other two terms in Φ̂ is similar and hence is omitted.

Note that by (A.50), Lemma 2, Lemma 3(a), and Assumption 4, we have∥∥∥T−1H−1V̂ V̂ ᵀH−ᵀ − Σv
∥∥∥

MAX
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=
∥∥∥T−1H−1(V̂ −HV̄ )V̂ ᵀH−ᵀ + T−1V̄ (V̂ ᵀ − V̄ ᵀHᵀ)H−ᵀ + T−1V V ᵀ − Σv − v̄v̄ᵀ

∥∥∥
MAX

=Op(n
−1 + T−1/2).

By (A.20), Lemma 2, and the proof of Theorem 2, we have

‖η̂H − η‖MAX = Op(n
−1 + T−1/2),

∥∥H−1γ̃ − γ
∥∥

MAX
= Op(n

−1/2 + T−1/2). (A.28)

Therefore, to prove (A.27), we only need to show that

Π̃12 := (H−1 ⊗ Id)Π̂12H
−ᵀ p−→ Π12, (A.29)

with which, and by the continuous mapping theorem, we have(
γ̃ᵀ
(

Σ̂v
)−1
⊗ Id

)
Π̂12η̂

ᵀ =

(
(H−1γ̃)ᵀ

(
H−1Σ̂vH−ᵀ

)−1
⊗ Id

)
(H−1 ⊗ Id)Π̂12H

−ᵀ(η̂H)ᵀ

p−→
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ.

Writing Ṽ = H−1V̂ , we have

Π̃12,(i−1)d+j,i′ = vec(eje
ᵀ
i )

ᵀ(H−1 ⊗ Id)Π̂12H
−ᵀei′ = vec(eje

ᵀ
iH
−1)ᵀΠ̂12H

−ᵀei′ = T−1
T∑
t=1

T∑
s=1

ẑjtṽitQtsṽi′s,

where Qst =
(

1− |s−t|q+1

)
1|s−t|≤q.

In fact, to show (A.29), by Lemma 2 we only need to prove for any fixed 1 ≤ i, i′ ≤ p, and

1 ≤ j, j′ ≤ d,

Π̃12,(i−1)d+j,i′ − T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s
p−→ 0, (A.30)

since by the identical proof of Theorem 2 in Newey and West (1987), we have

T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s −Π12,(i−1)d+j,i′
p−→ 0.

Note that

the left-hand side of (A.30)

=T−1
T∑
t=1

T∑
s=1

{
(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s) + (ẑjt − zjt)(ṽit − vit)Qtsvi′s

+ (ẑjt − zjt)vitQtsṽi′s + zjt(ṽit − vit)Qtsṽi′s + zjtṽitQts(ṽi′s − vi′s)
}
.
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We analyze these terms one by one. Since we have

Ẑ − Z̄ = ηV̄ − η̂V̂ = (ηH−1 − η̂)HV̄ − (η̂ − ηH−1)(V̂ −HV̄ )− ηH−1(V̂ −HV̄ ), (A.31)

it follows from (A.20), (A.35), and Lemmas 1 and 2 that

T−1
∥∥∥Ẑ − Z̄∥∥∥

F

≤KT−1
(∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

F
+
∥∥η̂ − ηH−1

∥∥
F

∥∥∥V̂ −HV̄ ∥∥∥
F

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
F

)
=Op(n

−1/2T−1/2 + T−1).

Moreover, by Lemma 9(i), Assumption 14, (A.31), and (A.28), we have∥∥∥Ẑ − Z̄∥∥∥
MAX

≤
∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

MAX
+
∥∥η̂ − ηH−1

∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
MAX

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
MAX

=Op((log T )1/aT−1/2 + n−1/2T 1/4).

By Cauchy-Schwartz inequality, Lemmas 1, 9(i) , and using the fact that |Qts| ≤ 1|t−s|≤q and∥∥v̄ιᵀT∥∥F
= ‖v̄‖F

∥∥ιᵀT∥∥F
≤ KT 1/2 ‖v̄‖MAX = Op(1), we have∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1

(∥∥∥Ṽ − V̄ ∥∥∥
MAX

+
∥∥v̄ιᵀT∥∥MAX

)(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
=Op

(
q(T−1 + n−1)(T 1/4n−1/2 + T−1)

)
.

Similarly, because of
∥∥∥Ṽ ∥∥∥

F
≤ Op(T 1/2) implied by (A.36), ‖Z‖MAX = Op((log T )1/a) by Assumption

14 and Lemma 2, and by Assumptions 4 and 6, we have∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qtsvi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a(n−1 + T−1)

)
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

(ẑjt − zjt)vitQtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

zjt(ṽit − vit)Qtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,
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∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

zjtṽitQts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
.

All the above terms converge to 0, as T, n → ∞, with qT−1/4 + qn−1/4 → 0 and n−3T → 0, which

establishes (A.30).

Finally, to show the consistency of Υ̂, we first note∥∥∥Hᵀ
(

Σ̂β − β̂0β̂
ᵀ
0

)
H −

(
Σβ − β0β

ᵀ
0

)∥∥∥
MAX

≤
∥∥∥HᵀΣ̂βH − Σβ

∥∥∥
MAX

+
∥∥∥Hᵀβ̂0β̂

ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

.

By Lemmas 2, 4(d), 5(d), and Assumption 5,∥∥∥HᵀΣ̂βH − Σβ
∥∥∥

MAX

≤
∥∥∥n−1Hᵀβ̂ᵀβ̂H − n−1βᵀβ

∥∥∥
MAX

+
∥∥∥n−1βᵀβ − Σβ

∥∥∥
MAX

≤
∥∥∥n−1

(
Hᵀβ̂ᵀ − βᵀ

)
(β̂H − β) + n−1

(
Hᵀβ̂ᵀ − βᵀ

)
β − n−1βᵀ(β − β̂H)

∥∥∥
MAX

+ op(1)

=op(1). (A.32)∥∥∥Hᵀβ̂0β̂
ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

≤
∥∥∥(Hᵀβ̂0 − β0

)(
β̂ᵀ0H − β

ᵀ
0

)
+ β0

(
β̂ᵀ0H − β

ᵀ
0

)
+
(
Hᵀβ̂0 − β0

)
βᵀ0

∥∥∥
MAX

=op(1),

where we also use Lemma 4(c):∥∥∥Hᵀβ̂0 − β0

∥∥∥
MAX

= n−1
∥∥∥(Hᵀβ̂ᵀ − βᵀ

)
ιn

∥∥∥
MAX

= op(1).

Next, by Lemma 3(b) and (A.28), we have

σ̂α
2 − (σα)2 =n−1

∥∥∥r̄ − ιnγ̃0 − β̂γ̃
∥∥∥2

F
− (σα)2

=n−1
∥∥∥ιn(γ0 − γ̃0) + βγ − β̂γ̃ + βv̄ + ū

∥∥∥2

F
+ n−1 ‖α‖2F − (σα)2

≤n−1 ‖ιn‖2F ‖γ0 − γ̃0‖2F + n−1 ‖β‖2F ‖v̄‖
2
F + n−1 ‖ū‖2F + n−1

∥∥∥(β̂H − β)γ
∥∥∥2

F

+ n−1
∥∥∥(β̂H − β)(H−1γ̃ − γ)

∥∥∥2

F
+ n−1

∥∥β(H−1γ̃ − γ)
∥∥2

F
+ op(1).

Therefore, by (A.20) and the continuous mapping theorem,

σ̂α
2
η̂HH−1

(
Σ̂β − β̂0β̂

ᵀ
0

)−1
H−ᵀHᵀη̂ᵀ

p−→ Υ,

which concludes the proof.
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Proof of Theorem 7. For Ψ̂1t, we can follow exactly the same proof as that of Theorem 6, since,

similar to (A.28) for γ̃, we have the same estimate for v̂t by (A.26).

As to Ψ̂2t, similarly, we only need to show∥∥∥HᵀΩ̂tH − Ωt

∥∥∥
MAX

= op(1).

Then by the continuous mapping theorem, along with (A.28) and (A.32), we have

Ψ̂2t = η̂H
(
HᵀΣ̂βH

)−1
HᵀΩ̂tH

(
HᵀΣ̂βH

)−1
Hᵀη̂ᵀ

p−→ Ψ2t.

We analyze the case with estimator (7) first. Note that

∥∥∥HᵀΩ̂tH − Ωt

∥∥∥
MAX

≤ 1

n

∥∥∥∥∥
n∑
i=1

(
Hᵀβ̂iβ̂

ᵀ
iHû

2
it − βiβ

ᵀ
i u

2
it

)∥∥∥∥∥
MAX

+
1

n

∥∥∥∥∥
n∑
i=1

βiβ
ᵀ
i (u2

it − Eu2
it)

∥∥∥∥∥
MAX

.

On the one hand, by the law of large numbers for i.n.i.d sequences, we have∥∥∥∥∥ 1

n

n∑
i=1

βiβ
ᵀ
i (u2

it − Eu2
it)

∥∥∥∥∥
MAX

= op(1).

On the other hand, writing β̃ = β̂H, for some fixed t ≤ T , we first show

n∑
i=1

(ûit − uit)2 = Op(1 + nT−1).

In fact, by (A.26), ‖β‖F = Op(n
1/2), ‖v̄t‖ = Op(1), and Lemma 3(b),

n∑
i=1

(ûit − ūit)2 =

n∑
i=1

(β̃ᵀi ṽt − β
ᵀ
i v̄t)

2 ≤
n∑
i=1

(
(β̃i − βi)ᵀ(ṽt − v̄t) + βᵀi (ṽt − v̄t)− (βi − β̃i)ᵀv̄t

)2

≤K ‖ṽt − v̄t‖2
(∥∥∥β̃ − β∥∥∥2

F
+ ‖β‖2F

)
+K

∥∥∥β̃ − β∥∥∥2

F
‖v̄t‖2

=Op(1 + nT−1).

Hence, by (A.2) we have

n∑
i=1

(ûit − uit)2 ≤ 2

n∑
i=1

(ûit − ūit)2 + 2 ‖ū‖2F = Op(1 + nT−1).

Using this as well as Cauchy-Schwartz inequality, we have

1

n

n∑
i=1

∣∣û2
it − u2

it

∣∣ ≤
 1

n

n∑
i=1

(ûit − uit)2 +
2

n

(
n∑
i=1

u2
it

n∑
i=1

(uit − ûit)2

)1/2
 = Op(n

−1/2 + T−1/2),

60



then by Lemmas 3(b) and 9(ii), we have

1

n

∥∥∥∥∥
n∑
i=1

(β̃i − βi)(β̃i − βi)ᵀ(û2
it − u2

it)
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MAX

≤
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MAX

1

n

n∑
i=1

|û2
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1

n
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MAX

≤ 1

n

∥∥∥β̃ − β∥∥∥2

MAX

n∑
i=1

u2
it = op(1).

1

n
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βi(β̃i − βi)ᵀu2
it
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MAX

≤ 1

n
‖β‖MAX

∥∥∥β̃ − β∥∥∥
MAX

n∑
i=1

u2
it = op(1).

1

n
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n∑
i=1

(β̃i − βi)βᵀi u
2
it
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MAX

≤ 1

n
‖β‖MAX

∥∥∥β̃ − β∥∥∥
MAX

n∑
i=1

u2
it = op(1).

1

n
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βi(β̃i − βi)ᵀ(û2
it − u2

it)

∥∥∥∥∥
MAX

≤ ‖β‖MAX

∥∥∥β̃ − β∥∥∥
MAX

1

n

n∑
i=1

∣∣û2
it − u2

it

∣∣ = op(1).

1

n
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n∑
i=1

(β̃i − βi)βᵀi (û2
it − u2

it)
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MAX

≤ ‖β‖MAX

∥∥∥β̃ − β∥∥∥
MAX

1

n
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i=1

∣∣û2
it − u2

it
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1

n
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βiβ
ᵀ
i (û2

it − u2
it)
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MAX

≤ ‖β‖2MAX

1

n
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∣∣û2
it − u2

it

∣∣ = op(1).

Therefore, we have

1

n

∥∥∥∥∥
n∑
i=1

(
Hᵀβ̂iβ̂

ᵀ
iHû

2
it − βiβ

ᵀ
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2
it
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MAX

≤ 1
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it − u2
it) + (β̃i − βi)βᵀi u

2
it + βiβ

ᵀ
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it − u2
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=op(1),

which leads to the desired result.

Finally, we prove (ii) for the estimator (8). Note that by Fan et al. (2013), we have∥∥∥Σ̂u − Σu
∥∥∥ = Op(snω

1−h
T ). (A.33)

Then by (A.33) and Lemmas 3(b), 4(d), and using the fact that ‖β‖F = Op(n
1/2) and ‖Σu‖ ≤

‖Σu‖1 = Op(sn), we have

1

n
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,
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1

n

∥∥∥βᵀ(Σ̂u − Σu)β
∥∥∥

MAX
≤ 1

n
‖β‖2F

∥∥∥Σ̂u − Σu
∥∥∥ = Op

(
snω

1−h
T

)
,

1

n

∥∥∥βᵀ(Σ̂u − Σu)(β̃ − β)
∥∥∥

MAX
≤ 1

n

∥∥∥(Σ̂u − Σu)(β̃ − β)βᵀ
∥∥∥ ≤ 1

n
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n
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(
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)
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1
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n

∥∥∥βᵀ(β̃ − β)
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MAX
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(
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)
.

Therefore,∥∥∥HᵀΩ̂H − Ω
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MAX
=

1

n
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1

n
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= op(1),

which concludes the proof.

62


	Introduction
	Model Setup
	An Invariance Property

	Identification
	The Three-Pass Estimator
	Asymptotic Theory
	Determining the Number of Factors
	Limiting Distribution of "0362
	Goodness-of-Fit Measures
	Robustness of the Choice of p 
	Limiting Distribution of g"0362gt
	Asymptotic Variances Estimation

	Simulations
	Empirical Analysis 
	Data
	Factors from the Large Panel of Returns
	Risk Premia Estimates for Observable Factors
	Observable and Unobservable Factors
	From the Individual Risk Premium to Multifactor Risk Premia

	Conclusion
	Figures and Tables
	Mathematical Proofs
	Proofs of Main Theorems
	Technical Lemmas and Their Proofs




